Abstract

For the first time, an all-solid tellurite optical glass rod with a transversely disordered refractive index profile was fabricated successfully as a medium to study the transverse localization of light and near-infrared (NIR) optical image transport. Two tellurite glass compositions of 70TeO2-8Li2O-17WO3-3MoO3-2Nb2O5 (TLWMN) and 75TeO2-15ZnO-5Na2O-5La2O3 (TZNL) which have a small difference in softening temperature (about 0.5 °C), compatible thermal expansions from room to 400 °C and broad transmission range from about 0.4 up to 6.0 µm were developed for a successful fabrication process. The tellurite transversely disordered optical rod (TDOR) consists of high and low-index units (TLWMN and TZNL, respectively). The diameter of each unit is 1.0 μm and their refractive index difference was about 0.095 at 1.55 µm. Experimental results showed that after a CW probe beam at 1.55 μm propagated in a 10-cm-long tellurite TDOR, the beam became localized. In addition, NIR optical images at 1.55 μm of numbers on a test target were transported. The captured images at the output facet of the tellurite TDOR are visually clear with high contrast and high brightness. The quality of our transported optical images can be comparable or higher than the results which were obtained by a polymer Anderson localized fiber and by a commercially available multicore imaging optical fiber.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55μm

Xian Feng, Francesco Poletti, Angela Camerlingo, Francesca Parmigiani, Peter Horak, Periklis Petropoulos, Wei H. Loh, and David J. Richardson
Opt. Express 17(22) 20249-20255 (2009)

Control of the radiative properties via photon-plasmon interaction in Er3+-Tm3+-codoped tellurite glasses in the near infrared region

V.A.G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega
Opt. Express 22(17) 21122-21136 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).
  2. R. J. H. Clark and R. E. Hester, Biomedical Applications of Spectroscopy (Wiley & Sons, 1996).
  3. H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley, 1996).
  4. B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
    [Crossref]
  5. S. Mil’Shtein, “Infrared scanning for biomedical applications,” Scanning 28(5), 274–277 (2006).
    [Crossref] [PubMed]
  6. A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref] [PubMed]
  7. S. Mil’Shtein and N. Lue, “Infrared scanner for biological applications,” Scanning 28, 274 (2007).
  8. V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
    [Crossref] [PubMed]
  9. J. H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18(7), 7427–7439 (2010).
    [Crossref] [PubMed]
  10. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]
  11. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [Crossref] [PubMed]
  12. T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).
  13. H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source optical coherence tomography,” Appl. Opt. 50(5), 627–640 (2011).
    [Crossref] [PubMed]
  14. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
    [Crossref]
  15. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47(25), 4560–4568 (2008).
    [Crossref] [PubMed]
  16. S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37(12), 2304–2306 (2012).
    [Crossref] [PubMed]
  17. S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
    [Crossref] [PubMed]
  18. S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
    [Crossref]
  19. A. Belwalkar, W. Z. Misiolek, and J. Toulouse, “Viscosity study of the optical tellurite glass: 75TeO2-20ZnO-5Na2O,” J. Non-Cryst. Solids 356(25-27), 1354–1358 (2010).
    [Crossref]
  20. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
    [Crossref] [PubMed]
  21. Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
    [Crossref]
  22. H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
    [Crossref]
  23. S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express 20(17), 18692–18706 (2012).
    [Crossref] [PubMed]
  24. A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
    [Crossref]
  25. M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
    [Crossref]
  26. M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
    [Crossref]
  27. A. J. Werner, “Methods in High Precision Refractometry of Optical Glasses,” Appl. Opt. 7(5), 837–843 (1968).
    [Crossref] [PubMed]
  28. J. W. Gooch, “Sellmeier Equation,” in Encyclopedic Dictionary of Polymers, J. W. Gooch, ed. (Springer, 2011), pp. 653–654.

2017 (1)

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

2015 (1)

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

2014 (1)

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref] [PubMed]

2013 (2)

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

2012 (5)

2011 (1)

2010 (2)

A. Belwalkar, W. Z. Misiolek, and J. Toulouse, “Viscosity study of the optical tellurite glass: 75TeO2-20ZnO-5Na2O,” J. Non-Cryst. Solids 356(25-27), 1354–1358 (2010).
[Crossref]

J. H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18(7), 7427–7439 (2010).
[Crossref] [PubMed]

2009 (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (3)

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[Crossref]

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
[Crossref] [PubMed]

S. Mil’Shtein and N. Lue, “Infrared scanner for biological applications,” Scanning 28, 274 (2007).

2006 (1)

S. Mil’Shtein, “Infrared scanning for biomedical applications,” Scanning 28(5), 274–277 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

1968 (1)

Bagavathiappan, S.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Ballato, J.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref] [PubMed]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Bartelt, H.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Belwalkar, A.

A. Belwalkar, W. Z. Misiolek, and J. Toulouse, “Viscosity study of the optical tellurite glass: 75TeO2-20ZnO-5Na2O,” J. Non-Cryst. Solids 356(25-27), 1354–1358 (2010).
[Crossref]

Camerlingo, A.

Chen, X.

Cheng, T. L.

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Christodoulides, D. N.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Dasgupta, S.

Deng, D. H.

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

Duan, Z. C.

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Erwan, M.

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Faenza, W.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Feng, M.

Feng, X.

Flanagan, J. C.

Ford, H. D.

H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source optical coherence tomography,” Appl. Opt. 50(5), 627–640 (2011).
[Crossref] [PubMed]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[Crossref]

Frampton, K. E.

Frazier, R. J.

Gmitro, A. F.

Han, J. H.

Hawkins, T.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref] [PubMed]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Hejazi, S.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Hewak, D. W.

Horak, P.

Jayakumar, T.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Kang, J. U.

Kano, A.

Karbasi, S.

Kirkpatrick, N. D.

Kobelke, J.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Koch, K. W.

Lahiri, B. B.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Lederer, F.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Lee, J.

Liao, M. S.

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Loh, W. H.

Lue, N.

S. Mil’Shtein and N. Lue, “Infrared scanner for biological applications,” Scanning 28, 274 (2007).

Mafi, A.

Mairaj, A. K.

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Mil’Shtein, S.

S. Mil’Shtein and N. Lue, “Infrared scanner for biological applications,” Scanning 28, 274 (2007).

S. Mil’Shtein, “Infrared scanning for biomedical applications,” Scanning 28(5), 274–277 (2006).
[Crossref] [PubMed]

Mirr, C. R.

Misiolek, W. Z.

A. Belwalkar, W. Z. Misiolek, and J. Toulouse, “Viscosity study of the optical tellurite glass: 75TeO2-20ZnO-5Na2O,” J. Non-Cryst. Solids 356(25-27), 1354–1358 (2010).
[Crossref]

Monro, T. M.

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Nolte, S.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Ohishi, Y.

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Pansare, V.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Pertsch, T.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Peschel, U.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Petropoulos, P.

Philip, J.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Price, J. H.

Prud’homme, R. K.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Reichenbach, K. L.

Richardson, D. J.

Rutt, H. N.

Schuster, K.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Segev, M.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Silberberg, Y.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Suzuki, T.

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Tanbakuchi, A.

Tatam, R. P.

H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source optical coherence tomography,” Appl. Opt. 50(5), 627–640 (2011).
[Crossref] [PubMed]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[Crossref]

Tong, H. T.

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Toulouse, J.

A. Belwalkar, W. Z. Misiolek, and J. Toulouse, “Viscosity study of the optical tellurite glass: 75TeO2-20ZnO-5Na2O,” J. Non-Cryst. Solids 356(25-27), 1354–1358 (2010).
[Crossref]

Tunnermann, A.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Udovich, J. A.

Utzinger, U.

Werner, A. J.

White, N. M.

Xu, C.

Yarandi, P. G.

Adv. Opt. Photonics (1)

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

Appl. Opt. (3)

Chem. Mater. (1)

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

J. Ceram. Soc. Jpn. (1)

H. T. Tong, Z. C. Duan, D. H. Deng, T. Suzuki, and Y. Ohishi, “Fabrication and supercontinuum generation in a tellurite hybrid microstructured optical fiber with near-zero and flattened chromatic dispersion control,” J. Ceram. Soc. Jpn. 125(12), 876–880 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

A. Belwalkar, W. Z. Misiolek, and J. Toulouse, “Viscosity study of the optical tellurite glass: 75TeO2-20ZnO-5Na2O,” J. Non-Cryst. Solids 356(25-27), 1354–1358 (2010).
[Crossref]

Meas. Sci. Technol. (1)

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[Crossref]

Nat. Commun. (1)

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

Z. C. Duan, H. T. Tong, M. S. Liao, T. L. Cheng, M. Erwan, T. Suzuki, and Y. Ohishi, “New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers,” Opt. Mater. 35(12), 2473–2479 (2013).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004).

Scanning (2)

S. Mil’Shtein, “Infrared scanning for biomedical applications,” Scanning 28(5), 274–277 (2006).
[Crossref] [PubMed]

S. Mil’Shtein and N. Lue, “Infrared scanner for biological applications,” Scanning 28, 274 (2007).

Other (4)

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).

R. J. H. Clark and R. E. Hester, Biomedical Applications of Spectroscopy (Wiley & Sons, 1996).

H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley, 1996).

J. W. Gooch, “Sellmeier Equation,” in Encyclopedic Dictionary of Polymers, J. W. Gooch, ed. (Springer, 2011), pp. 653–654.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 TMA properties of the TLWMN and TZNL tellurite glasses.
Fig. 2
Fig. 2 Measured transmission spectra of the TLWMN and TZNL tellurite glasses.
Fig. 3
Fig. 3 Refractive index dispersions of the TLWMN and TZNL tellurite glasses.
Fig. 4
Fig. 4 Schematic image of the fabrication process to fabricate an all-solid tellurite TDOR.
Fig. 5
Fig. 5 Images of the all-solid tellurite TDOR and a random square region in its cross-section.
Fig. 6
Fig. 6 Experimental setup for the near-field intensity measurements.
Fig. 7
Fig. 7 Typical near-field intensity profile of a localized beam at the output facet of a 10-cm long all-solid tellurite TDOR fabricated in this work.
Fig. 8
Fig. 8 Cross section of the corresponding near-field intensity profile shown in Fig. 7.
Fig. 9
Fig. 9 Experimental setup for the measurement of NIR optical image transport in a 10-cm long tellurite TDOR.
Fig. 10
Fig. 10 The 1951 U.S. Air Force test target and images of numbers 3, 4 and 5 of group 6. (https://www.thorlabs.com/images/GuideImages/4339_R3L3S1N_SGL.jpg)
Fig. 11
Fig. 11 Transported images of numbers (3, 4 and 5) on the 1951 U.S. Air Force test target after a 10-cm long tellurite TDOR by using a CW probe beam at 1550 nm.

Tables (1)

Tables Icon

Table 1 The Sellmeier coefficients of TLWMN and TZNL glasses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 (λ)=1+ i=1 3 A i λ 2 λ 2 L i 2
f= s TLWMN s TLWMN + s TZNL

Metrics