Abstract

A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel control of plasma expansion direction aimed at very low pressure laser-induced plasma spectroscopy

Soo-Jin Choi, Jae-Jun Choi, and Jack J. Yoh
Opt. Express 23(5) 6336-6344 (2015)

Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective

Soo-Jin Choi and Jack J. Yoh
Opt. Express 19(23) 23097-23103 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
    [Crossref]
  2. W. Hopper, “One Mill’s Experience Using MAC Testing to Evaluate Vacuum Interrupter Integrity in 15 kV Vacuum Circuit Breakers,” IEEE Trans. Ind. Appl. 53(1), 774–779 (2017).
    [Crossref]
  3. P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
    [Crossref]
  4. K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
    [Crossref] [PubMed]
  5. A. G. Bagmutand and V. M. Beresnev, “Kinetics of the electron beam induced crystallization of amorphous ZrO2 films obtained via ion-plasma and laser sputtering,” Phys. Solid State 59(1), 151–155 (2017).
    [Crossref]
  6. D. J. Pacey, Measurement of vacuum. In Instrumentation Reference Book: Third Edition (Elsevier Inc., 2003).
  7. N. Barry, Taylor, and Ambler Thompson, “The International System of Units (SI),” (National Institute of Standards and Technology, 2008).
  8. S. G. Foord, “An improved Bourdon gauge,” J. Sci. Instrum. 11(4), 126–127 (2002).
    [Crossref]
  9. C. Meinke and G. Reich, “Influence of diffusion on the measurement of low pressure with the McLeod vacuum gauge. Based on a paper by Gaede,” Vacuum 13(12), 579–581 (1963).
    [Crossref]
  10. G. Loriotand and T. Moran, “Reliability of a capacitance manometer in the range 2×10−4-5×10−6Torr,” Rev. Sci. Instrum. 46(2), 140–143 (1975).
    [Crossref]
  11. J. S. Shie, B. C. S. Chou, and Y. Chen, “High performance Pirani vacuum gauge,” J. Vac. Sci. Technol. A 13(6), 2972–2979 (1998).
    [Crossref]
  12. C. K. Dong and G. R. Myneni, “Carbon nanotube electron source based ionization vacuum gauge,” Appl. Phys. Lett. 84(26), 5443–5445 (2004).
    [Crossref]
  13. P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
    [Crossref] [PubMed]
  14. J. Karl, G. Padilla-Víquezand, and T. Bock, “Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements,” J. Phys. Conf. Ser. 100, 0920059 (2008).
  15. M. Weuffel, D. Gentschand, and P. G. Nikolic, “Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters,” IEEE Trans. Plasma Sci. 45(8), 2144–2149 (2017).
    [Crossref]
  16. X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
    [Crossref]
  17. S. V. Shabanov and B.I. Gornushkin, “Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 204, 190–205 (2018).
    [Crossref]
  18. A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
    [Crossref]
  19. J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
    [Crossref]
  20. B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
    [Crossref]
  21. H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
    [Crossref]
  22. M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
    [Crossref]
  23. X. M. Lin, H. R. Sun, and J. J. Lin, “Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS,” Proc. SPIE 10457, 104571V (2017).
  24. N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
    [Crossref]
  25. N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
    [Crossref]
  26. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
    [Crossref]
  27. S. Amoruso, B. Toftmann, and J. Schou, “Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow,” Phys. Rev. E 69(5), 056403 (2004).
    [Crossref] [PubMed]
  28. M. S. Dawood, A. Hamdan, and J. Margot, “Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas,” AIP Adv. 5(10), 107143 (2015).
    [Crossref]
  29. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
    [Crossref]
  30. Z. Y. Chen, D. Bleiner, and A. Bogaerts, “Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation,” J. Appl. Phys. 99(6), 063304 (2006).
    [Crossref]
  31. S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
    [Crossref]
  32. Q. M. Xiao, “Analysis of ITER-like first wall materials in tokamak by laser induced breakdown and mass spectroscopy,” http://cdmd.cnki.com.cn/Article/CDMD-10141-1015573855.htm .
  33. S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
    [Crossref]
  34. M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
    [Crossref]

2018 (2)

S. V. Shabanov and B.I. Gornushkin, “Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 204, 190–205 (2018).
[Crossref]

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

2017 (6)

M. Weuffel, D. Gentschand, and P. G. Nikolic, “Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters,” IEEE Trans. Plasma Sci. 45(8), 2144–2149 (2017).
[Crossref]

W. Hopper, “One Mill’s Experience Using MAC Testing to Evaluate Vacuum Interrupter Integrity in 15 kV Vacuum Circuit Breakers,” IEEE Trans. Ind. Appl. 53(1), 774–779 (2017).
[Crossref]

A. G. Bagmutand and V. M. Beresnev, “Kinetics of the electron beam induced crystallization of amorphous ZrO2 films obtained via ion-plasma and laser sputtering,” Phys. Solid State 59(1), 151–155 (2017).
[Crossref]

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

X. M. Lin, H. R. Sun, and J. J. Lin, “Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS,” Proc. SPIE 10457, 104571V (2017).

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

2016 (6)

P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
[Crossref]

K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
[Crossref] [PubMed]

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
[Crossref] [PubMed]

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
[Crossref]

2015 (1)

M. S. Dawood, A. Hamdan, and J. Margot, “Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas,” AIP Adv. 5(10), 107143 (2015).
[Crossref]

2014 (4)

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
[Crossref]

2011 (1)

A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
[Crossref]

2008 (2)

J. Karl, G. Padilla-Víquezand, and T. Bock, “Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements,” J. Phys. Conf. Ser. 100, 0920059 (2008).

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
[Crossref]

2006 (1)

Z. Y. Chen, D. Bleiner, and A. Bogaerts, “Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation,” J. Appl. Phys. 99(6), 063304 (2006).
[Crossref]

2004 (3)

S. Amoruso, B. Toftmann, and J. Schou, “Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow,” Phys. Rev. E 69(5), 056403 (2004).
[Crossref] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

C. K. Dong and G. R. Myneni, “Carbon nanotube electron source based ionization vacuum gauge,” Appl. Phys. Lett. 84(26), 5443–5445 (2004).
[Crossref]

2003 (1)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

2002 (1)

S. G. Foord, “An improved Bourdon gauge,” J. Sci. Instrum. 11(4), 126–127 (2002).
[Crossref]

1998 (1)

J. S. Shie, B. C. S. Chou, and Y. Chen, “High performance Pirani vacuum gauge,” J. Vac. Sci. Technol. A 13(6), 2972–2979 (1998).
[Crossref]

1975 (1)

G. Loriotand and T. Moran, “Reliability of a capacitance manometer in the range 2×10−4-5×10−6Torr,” Rev. Sci. Instrum. 46(2), 140–143 (1975).
[Crossref]

1963 (1)

C. Meinke and G. Reich, “Influence of diffusion on the measurement of low pressure with the McLeod vacuum gauge. Based on a paper by Gaede,” Vacuum 13(12), 579–581 (1963).
[Crossref]

Ali, J.

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Amoruso, S.

S. Amoruso, B. Toftmann, and J. Schou, “Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow,” Phys. Rev. E 69(5), 056403 (2004).
[Crossref] [PubMed]

Arakawa, Y.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
[Crossref]

Aziz, M. S. A.

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Bagmutand, A. G.

A. G. Bagmutand and V. M. Beresnev, “Kinetics of the electron beam induced crystallization of amorphous ZrO2 films obtained via ion-plasma and laser sputtering,” Phys. Solid State 59(1), 151–155 (2017).
[Crossref]

Baker, A. A.

A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
[Crossref]

Belczynski, K.

K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
[Crossref] [PubMed]

Beresnev, V. M.

A. G. Bagmutand and V. M. Beresnev, “Kinetics of the electron beam induced crystallization of amorphous ZrO2 films obtained via ion-plasma and laser sputtering,” Phys. Solid State 59(1), 151–155 (2017).
[Crossref]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Bleiner, D.

Z. Y. Chen, D. Bleiner, and A. Bogaerts, “Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation,” J. Appl. Phys. 99(6), 063304 (2006).
[Crossref]

Bock, T.

J. Karl, G. Padilla-Víquezand, and T. Bock, “Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements,” J. Phys. Conf. Ser. 100, 0920059 (2008).

Bogaerts, A.

Z. Y. Chen, D. Bleiner, and A. Bogaerts, “Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation,” J. Appl. Phys. 99(6), 063304 (2006).
[Crossref]

Bousquet, B.

J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
[Crossref]

Bulik, T.

K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
[Crossref] [PubMed]

Busser, B.

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

Canioniand, L.

J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
[Crossref]

Cao, G.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Chaudary, K. T.

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Chen, Y.

J. S. Shie, B. C. S. Chou, and Y. Chen, “High performance Pirani vacuum gauge,” J. Vac. Sci. Technol. A 13(6), 2972–2979 (1998).
[Crossref]

Chen, Z. Y.

Z. Y. Chen, D. Bleiner, and A. Bogaerts, “Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation,” J. Appl. Phys. 99(6), 063304 (2006).
[Crossref]

Chou, B. C. S.

J. S. Shie, B. C. S. Chou, and Y. Chen, “High performance Pirani vacuum gauge,” J. Vac. Sci. Technol. A 13(6), 2972–2979 (1998).
[Crossref]

Coll, J. L.

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

Colon-Mercado, H.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Cristoforetti, G.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

Dawood, M. S.

M. S. Dawood, A. Hamdan, and J. Margot, “Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas,” AIP Adv. 5(10), 107143 (2015).
[Crossref]

Dell Aglio, M.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Ding, H.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

Ding, H. B.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Diwakar, P. K.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

Dong, C. K.

C. K. Dong and G. R. Myneni, “Carbon nanotube electron source based ionization vacuum gauge,” Appl. Phys. Lett. 84(26), 5443–5445 (2004).
[Crossref]

Egan, P. F.

P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
[Crossref] [PubMed]

Farid, N.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

Faridah, N.

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Foord, S. G.

S. G. Foord, “An improved Bourdon gauge,” J. Sci. Instrum. 11(4), 126–127 (2002).
[Crossref]

Fortes, F. J.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Freeman, J. R.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Gao, L.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Garcia-Diaz, B.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Gaudiuso, R.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Gentschand, D.

M. Weuffel, D. Gentschand, and P. G. Nikolic, “Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters,” IEEE Trans. Plasma Sci. 45(8), 2144–2149 (2017).
[Crossref]

Giacomo, A. D.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Gornushkin, B.I.

S. V. Shabanov and B.I. Gornushkin, “Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 204, 190–205 (2018).
[Crossref]

Gornushkin, I. B.

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

Haddad, J. E.

J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
[Crossref]

Hamdan, A.

M. S. Dawood, A. Hamdan, and J. Margot, “Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas,” AIP Adv. 5(10), 107143 (2015).
[Crossref]

Harilal, S. S.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Hashemi, M. M.

A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
[Crossref]

Hassanein, A.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

Hauch, B.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Hendricks, J. H.

P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
[Crossref] [PubMed]

Holz, D. E.

K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
[Crossref] [PubMed]

Hopper, W.

W. Hopper, “One Mill’s Experience Using MAC Testing to Evaluate Vacuum Interrupter Integrity in 15 kV Vacuum Circuit Breakers,” IEEE Trans. Ind. Appl. 53(1), 774–779 (2017).
[Crossref]

Karl, J.

J. Karl, G. Padilla-Víquezand, and T. Bock, “Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements,” J. Phys. Conf. Ser. 100, 0920059 (2008).

Kawamura, K.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
[Crossref]

Komurasaki, K.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
[Crossref]

Kothary, P.

P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
[Crossref]

Lahaye, N. L.

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

Laserna, J. J.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Legnaioli, S.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

Leo, S. Y.

P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
[Crossref]

Lin, J. J.

X. M. Lin, H. R. Sun, and J. J. Lin, “Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS,” Proc. SPIE 10457, 104571V (2017).

Lin, X. M.

X. M. Lin, H. R. Sun, and J. J. Lin, “Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS,” Proc. SPIE 10457, 104571V (2017).

Liu, D. X.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Liu, P.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

López-Claros, M.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Loriotand, G.

G. Loriotand and T. Moran, “Reliability of a capacitance manometer in the range 2×10−4-5×10−6Torr,” Rev. Sci. Instrum. 46(2), 140–143 (1975).
[Crossref]

Majdabadiand, A.

A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
[Crossref]

Margot, J.

M. S. Dawood, A. Hamdan, and J. Margot, “Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas,” AIP Adv. 5(10), 107143 (2015).
[Crossref]

Martinez-Rodriguez, M.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Meinke, C.

C. Meinke and G. Reich, “Influence of diffusion on the measurement of low pressure with the McLeod vacuum gauge. Based on a paper by Gaede,” Vacuum 13(12), 579–581 (1963).
[Crossref]

Moncayo, S.

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

Moosakhani, A.

A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
[Crossref]

Moran, T.

G. Loriotand and T. Moran, “Reliability of a capacitance manometer in the range 2×10−4-5×10−6Torr,” Rev. Sci. Instrum. 46(2), 140–143 (1975).
[Crossref]

Motto-Ros, V.

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

Mounaix, P.

J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
[Crossref]

Myneni, G. R.

C. K. Dong and G. R. Myneni, “Carbon nanotube electron source based ionization vacuum gauge,” Appl. Phys. Lett. 84(26), 5443–5445 (2004).
[Crossref]

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Nikolic, P. G.

M. Weuffel, D. Gentschand, and P. G. Nikolic, “Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters,” IEEE Trans. Plasma Sci. 45(8), 2144–2149 (2017).
[Crossref]

Olsonand, L.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Padilla-Víquezand, G.

J. Karl, G. Padilla-Víquezand, and T. Bock, “Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements,” J. Phys. Conf. Ser. 100, 0920059 (2008).

Palleschi, V.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

Parvin, P.

A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
[Crossref]

Peng, J.

P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
[Crossref]

Phillips, B. M.

P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
[Crossref]

Reich, G.

C. Meinke and G. Reich, “Influence of diffusion on the measurement of low pressure with the McLeod vacuum gauge. Based on a paper by Gaede,” Vacuum 13(12), 579–581 (1963).
[Crossref]

Ricker, J. E.

P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
[Crossref] [PubMed]

Rider, A. N.

A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
[Crossref]

Rizvi, S. Z. H.

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Rong, M. Z.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Salvettiand, A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

Salwanie, N.

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Sanceyand, L.

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

Santagata, A.

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

Schou, J.

S. Amoruso, B. Toftmann, and J. Schou, “Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow,” Phys. Rev. E 69(5), 056403 (2004).
[Crossref] [PubMed]

Shabanov, S. V.

S. V. Shabanov and B.I. Gornushkin, “Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 204, 190–205 (2018).
[Crossref]

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

Shaughnessy, R. O.

K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
[Crossref] [PubMed]

Shie, J. S.

J. S. Shie, B. C. S. Chou, and Y. Chen, “High performance Pirani vacuum gauge,” J. Vac. Sci. Technol. A 13(6), 2972–2979 (1998).
[Crossref]

Smith, G.

A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
[Crossref]

Sridharan, K.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Stone, J. A.

P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
[Crossref] [PubMed]

Sun, H. R.

X. M. Lin, H. R. Sun, and J. J. Lin, “Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS,” Proc. SPIE 10457, 104571V (2017).

Tillack, M. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Toftmann, B.

S. Amoruso, B. Toftmann, and J. Schou, “Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow,” Phys. Rev. E 69(5), 056403 (2004).
[Crossref] [PubMed]

Tognoni, E.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

Ushio, M.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
[Crossref]

Wang, C. H.

A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
[Crossref]

Wang, W. T.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Wang, X. H.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Weuffel, M.

M. Weuffel, D. Gentschand, and P. G. Nikolic, “Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters,” IEEE Trans. Plasma Sci. 45(8), 2144–2149 (2017).
[Crossref]

Yang, A. J.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

Yeom, H.

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Yuan, H.

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

AIP Adv. (1)

M. S. Dawood, A. Hamdan, and J. Margot, “Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas,” AIP Adv. 5(10), 107143 (2015).
[Crossref]

AIP Conf. Proc. (1)

N. Faridah, N. Salwanie, S. Z. H. Rizvi, K. T. Chaudary, M. S. A. Aziz, and J. Ali, “Laser induced graphite plasma kinetic spectroscopy under different ambient pressures,” AIP Conf. Proc. 1824, 030007 (2017).
[Crossref]

Appl. Compos. Mater. (1)

A. N. Rider, A. A. Baker, C. H. Wang, and G. Smith, “An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites,” Appl. Compos. Mater. 18(3), 231–251 (2011).
[Crossref]

Appl. Phys. Lett. (1)

C. K. Dong and G. R. Myneni, “Carbon nanotube electron source based ionization vacuum gauge,” Appl. Phys. Lett. 84(26), 5443–5445 (2004).
[Crossref]

Appl. Phys., A Solids Surf. (1)

S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. Lahaye, and A. Hassanein, “Background gas collisional effects on expanding fs and ns laser ablation plumes,” Appl. Phys., A Solids Surf. 117(1), 319–326 (2014).
[Crossref]

Coord. Chem. Rev. (1)

B. Busser, S. Moncayo, J. L. Coll, L. Sanceyand, and V. Motto-Ros, “Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications,” Coord. Chem. Rev. 358, 70–79 (2018).
[Crossref]

IEEE Trans. Ind. Appl. (1)

W. Hopper, “One Mill’s Experience Using MAC Testing to Evaluate Vacuum Interrupter Integrity in 15 kV Vacuum Circuit Breakers,” IEEE Trans. Ind. Appl. 53(1), 774–779 (2017).
[Crossref]

IEEE Trans. Plasma Sci. (1)

M. Weuffel, D. Gentschand, and P. G. Nikolic, “Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters,” IEEE Trans. Plasma Sci. 45(8), 2144–2149 (2017).
[Crossref]

J. Appl. Phys. (3)

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Z. Y. Chen, D. Bleiner, and A. Bogaerts, “Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation,” J. Appl. Phys. 99(6), 063304 (2006).
[Crossref]

J. Phys. Conf. Ser. (1)

J. Karl, G. Padilla-Víquezand, and T. Bock, “Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements,” J. Phys. Conf. Ser. 100, 0920059 (2008).

J. Phys. D Appl. Phys. (1)

X. H. Wang, H. Yuan, D. X. Liu, A. J. Yang, P. Liu, L. Gao, H. B. Ding, W. T. Wang, and M. Z. Rong, “A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy,” J. Phys. D Appl. Phys. 49(44), 44LT01 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

S. V. Shabanov and B.I. Gornushkin, “Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 204, 190–205 (2018).
[Crossref]

J. Sci. Instrum. (1)

S. G. Foord, “An improved Bourdon gauge,” J. Sci. Instrum. 11(4), 126–127 (2002).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. S. Shie, B. C. S. Chou, and Y. Chen, “High performance Pirani vacuum gauge,” J. Vac. Sci. Technol. A 13(6), 2972–2979 (1998).
[Crossref]

Nature (1)

K. Belczynski, D. E. Holz, T. Bulik, and R. O. Shaughnessy, “The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars,” Nature 534(7608), 512 (2016).
[Crossref] [PubMed]

Phys. Rev. E (1)

S. Amoruso, B. Toftmann, and J. Schou, “Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow,” Phys. Rev. E 69(5), 056403 (2004).
[Crossref] [PubMed]

Phys. Solid State (1)

A. G. Bagmutand and V. M. Beresnev, “Kinetics of the electron beam induced crystallization of amorphous ZrO2 films obtained via ion-plasma and laser sputtering,” Phys. Solid State 59(1), 151–155 (2017).
[Crossref]

Proc. SPIE (1)

X. M. Lin, H. R. Sun, and J. J. Lin, “Comparison of SP-LIBS and DP-LIBS on metal and non-metal testing based on LIBS,” Proc. SPIE 10457, 104571V (2017).

Radiat. Meas. (1)

A. Moosakhani, P. Parvin, A. Majdabadiand, and M. M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39 (2016).
[Crossref]

Rev. Sci. Instrum. (2)

G. Loriotand and T. Moran, “Reliability of a capacitance manometer in the range 2×10−4-5×10−6Torr,” Rev. Sci. Instrum. 46(2), 140–143 (1975).
[Crossref]

P. F. Egan, J. A. Stone, J. E. Ricker, and J. H. Hendricks, “Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer,” Rev. Sci. Instrum. 87(5), 053113 (2016).
[Crossref] [PubMed]

Shock Waves (1)

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18(1), 35–39 (2008).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (4)

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvettiand, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectrochim. Acta B At. Spectrosc. 59(12), 1907–1917 (2004).
[Crossref]

M. López-Claros, M. Dell Aglio, R. Gaudiuso, A. Santagata, A. D. Giacomo, F. J. Fortes, and J. J. Laserna, “Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra,” Spectrochim. Acta B At. Spectrosc. 133, 63–67 (2017).
[Crossref]

J. E. Haddad, B. Bousquet, L. Canioniand, and P. Mounaix, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101(3), 171–182 (2014).
[Crossref]

Thin Solid Films (1)

H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olsonand, and K. Sridharan, “Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate,” Thin Solid Films 615(6), 202–209 (2016).
[Crossref]

Vac. Sci. Technol., B (1)

P. Kothary, B. M. Phillips, S. Y. Leo, and J. Peng, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” Vac. Sci. Technol., B 34(4), 041807 (2016).
[Crossref]

Vacuum (1)

C. Meinke and G. Reich, “Influence of diffusion on the measurement of low pressure with the McLeod vacuum gauge. Based on a paper by Gaede,” Vacuum 13(12), 579–581 (1963).
[Crossref]

Other (3)

D. J. Pacey, Measurement of vacuum. In Instrumentation Reference Book: Third Edition (Elsevier Inc., 2003).

N. Barry, Taylor, and Ambler Thompson, “The International System of Units (SI),” (National Institute of Standards and Technology, 2008).

Q. M. Xiao, “Analysis of ITER-like first wall materials in tokamak by laser induced breakdown and mass spectroscopy,” http://cdmd.cnki.com.cn/Article/CDMD-10141-1015573855.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic of the experiment setup.
Fig. 2
Fig. 2 Time resolved plasma imaging from 10−2Pa to 105Pa at a step of one magnitude order. Each row pictures represent one specific delay time from 200ns to 800ns at a step of 200ns. The upper right label is for pressure from 10−2Pa to 10Pa. The laser beam was incident from below and the red rectangle is the enlargement of 104Pa and 105Pa.
Fig. 3
Fig. 3 Tycipal signal-shot plasma images from 10−2Pa to 105Pa at a step of one magnitude order. The images were recorded at a delay of 600ns with a 100ns gate. The laser was incident from below.
Fig. 4
Fig. 4 The pressure extraction method from plasma images. The black, purple (dashed) and red lines represent the plume length, plasma intensities and distance to target surface, respectively.
Fig. 5
Fig. 5 Flowchart for pressure qualification in low, intermediate and high pressure range.
Fig. 6
Fig. 6 Verification of proposed method. The abscissa and ordinate of (a) represent the pressure measured by ionization gauge and our method, respectively. (b) represents the calculated accuracy at different pressures.

Tables (1)

Tables Icon

Table 1 Summary of pressure measurement techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Accuracy= i=1 n P i image P i gauge nP i gauge ×100%

Metrics