Abstract

We fabricate multimode polymer optical waveguides with circular graded-index (GI) cores which are aligned in parallel at desired positions using the Mosquito method. In the Mosquito method, three-dimensional wiring patterns can be formed with a simple process. However, the core position is likely to deviate from the designed position because of multiple fabrication factors. Hence, in this paper, the dominant parameters to influence on the core height in the cladding are investigated both theoretically and experimentally. In particular, a linear relationship between the core height and the needle-tip height is confirmed with theoretical fluid analysis. Using this relationship, we succeeded in fabricating a waveguide in which the maximum variation of the core height from the designed value is controlled to be less than 10 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the Mosquito method

Daisuke Suganuma and Takaaki Ishigure
Opt. Express 23(2) 1585-1593 (2015)

Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method

Ryota Kinoshita, Daisuke Suganuma, and Takaaki Ishigure
Opt. Express 22(7) 8426-8437 (2014)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–458 (2012).
    [Crossref]
  2. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
    [Crossref]
  3. J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2016).
    [Crossref]
  4. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [Crossref]
  5. M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
    [Crossref]
  6. H. Numata, F. Yamada, Y. Taira, and S. Nakagawa, “MT-like multi layer 48-channel polymer waveguide connector using novel passive alignment structure,” in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper OTuQ4.
    [Crossref]
  7. A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
    [Crossref]
  8. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  9. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
    [Crossref] [PubMed]
  10. K. Date and T. Ishigure, “Accurate core position control in polymer optical waveguides using the mosquito method for three-dimensional optical wiring,” Proc. SPIE 10109, 101090I (2017).
  11. K. Date, K. Fukagata, and T. Ishigure, “Precise core alignment in fabrication of polymer optical waveguides using the Mosquito method for three-dimensional optical circuits,” Proc. SPIE 10535, 105351Y (2018).
  12. H. Masuda and T. Ishigure, “Interchannel pitch conversion (250 to 125 µm) in multimode polymer optical waveguide for high-density optical wiring,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), 41–44.
    [Crossref]

2018 (1)

K. Date, K. Fukagata, and T. Ishigure, “Precise core alignment in fabrication of polymer optical waveguides using the Mosquito method for three-dimensional optical circuits,” Proc. SPIE 10535, 105351Y (2018).

2017 (1)

K. Date and T. Ishigure, “Accurate core position control in polymer optical waveguides using the mosquito method for three-dimensional optical wiring,” Proc. SPIE 10109, 101090I (2017).

2016 (1)

2014 (1)

2013 (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2012 (1)

2009 (1)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

2008 (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

1999 (1)

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Bamiedakis, N.

J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2016).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Beyeler, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Brown, C. T. A.

Chen, J.

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dangel, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Date, K.

K. Date, K. Fukagata, and T. Ishigure, “Precise core alignment in fabrication of polymer optical waveguides using the Mosquito method for three-dimensional optical circuits,” Proc. SPIE 10535, 105351Y (2018).

K. Date and T. Ishigure, “Accurate core position control in polymer optical waveguides using the mosquito method for three-dimensional optical wiring,” Proc. SPIE 10109, 101090I (2017).

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Edwards, T. J.

Enbutsu, K.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Enomoto, T.

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

Fukagata, K.

K. Date, K. Fukagata, and T. Ishigure, “Precise core alignment in fabrication of polymer optical waveguides using the Mosquito method for three-dimensional optical circuits,” Proc. SPIE 10535, 105351Y (2018).

Gmür, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Hikita, M.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Horst, F.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Imamura, S.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Ishigure, T.

K. Date, K. Fukagata, and T. Ishigure, “Precise core alignment in fabrication of polymer optical waveguides using the Mosquito method for three-dimensional optical circuits,” Proc. SPIE 10535, 105351Y (2018).

K. Date and T. Ishigure, “Accurate core position control in polymer optical waveguides using the mosquito method for three-dimensional optical wiring,” Proc. SPIE 10109, 101090I (2017).

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

H. Masuda and T. Ishigure, “Interchannel pitch conversion (250 to 125 µm) in multimode polymer optical waveguide for high-density optical wiring,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), 41–44.
[Crossref]

Kinoshita, R.

Lamprecht, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Masuda, H.

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

H. Masuda and T. Ishigure, “Interchannel pitch conversion (250 to 125 µm) in multimode polymer optical waveguide for high-density optical wiring,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), 41–44.
[Crossref]

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Morimoto, Y.

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

Offrein, B. J.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Ooba, N.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Penty, R. V.

J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2016).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Spreafico, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Suganuma, D.

Suzuki, K.

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

Taubenblatt, M. A.

Tomaru, S.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Usui, M.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Vasil’ev, P. P.

White, I. H.

J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2016).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Yamauchi, A.

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

Yoshida, T.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

Yoshimura, R.

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1237–1242 (1999).
[Crossref]

IEEE Trans. Adv. Packag. (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Proc. SPIE (2)

K. Date and T. Ishigure, “Accurate core position control in polymer optical waveguides using the mosquito method for three-dimensional optical wiring,” Proc. SPIE 10109, 101090I (2017).

K. Date, K. Fukagata, and T. Ishigure, “Precise core alignment in fabrication of polymer optical waveguides using the Mosquito method for three-dimensional optical circuits,” Proc. SPIE 10535, 105351Y (2018).

Other (3)

H. Masuda and T. Ishigure, “Interchannel pitch conversion (250 to 125 µm) in multimode polymer optical waveguide for high-density optical wiring,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), 41–44.
[Crossref]

H. Numata, F. Yamada, Y. Taira, and S. Nakagawa, “MT-like multi layer 48-channel polymer waveguide connector using novel passive alignment structure,” in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (Optical Society of America, 2011), paper OTuQ4.
[Crossref]

A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded-index multimode polymer optical waveguide enabling low loss and high density 3D on-board integration,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2016), 490–496.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Fabrication procedure of the Mosquito method
Fig. 2
Fig. 2 Definition of core height and height difference between the core and the needle-tip.
Fig. 3
Fig. 3 Side-view of the needle scan (a) captured still photo (b) enlarged photo of monomer wetting.
Fig. 4
Fig. 4 Size of the monomer wetting depending on the needle-tip height.
Fig. 5
Fig. 5 Core height dependence on the monomer wetting (a) without the effect of surface tension (b) with the effect of surface tension with a curved surface (c) with the effect of surface tension with a 500-µm-thick monomer wetting (waveguide thickness is 1000 µm in total).
Fig. 6
Fig. 6 Side-view when the core monomer is dispensed in the cladding monomer [10]
Fig. 7
Fig. 7 Cross-section under 80-mm/s scan velocity
Fig. 8
Fig. 8 Height difference between the core and needle-tip under different scan velocities
Fig. 9
Fig. 9 Relationship between the core height and the needle-tip height
Fig. 10
Fig. 10 Cross-section of the fabricated waveguide (a) after correction (b) without correction
Fig. 11
Fig. 11 Measurement setup (a) for insertion loss (b) for core height accuracy
Fig. 12
Fig. 12 Measured insertion loss
Fig. 13
Fig. 13 NFP images when the signal light is coupled to the cores on (a) the bottom layer (with an enlarged image) (b) the middle layer (c) the top layer (with an enlarged image)

Tables (3)

Tables Icon

Table 1 Factors to influence on the core height

Tables Icon

Table 2 Approximated relation

Tables Icon

Table 3 Core height correction

Metrics