Abstract

We present a short-wave infrared (SWIR) single photon camera based on a single superconducting nanowire single photon detector (SNSPD) and compressive imaging. We show SWIR single photon imaging at a megapixel resolution with a low signal-to-background ratio around 0.6, show SWIR video acquisition at 20 frames per second and 64x64 pixel video resolution, and demonstrate sub-nanosecond resolution time-of-flight imaging. All scenes were sampled by detecting only a small number of photons for each compressive sampling matrix. In principle, our technique can be used for imaging faint objects in the mid-IR regime.

Full Article  |  PDF Article
OSA Recommended Articles
Photon counting compressive depth mapping

Gregory A. Howland, Daniel J. Lum, Matthew R. Ware, and John C. Howell
Opt. Express 21(20) 23822-23837 (2013)

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller
Opt. Express 21(7) 8904-8915 (2013)

Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
    [Crossref]
  2. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  3. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref] [PubMed]
  4. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
    [Crossref]
  5. E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
    [Crossref] [PubMed]
  6. M. A. Itzler, M. Entwistle, U. Krishnamachari, M. Owens, X. Jiang, K. Slomkowski, and S. Rangwala, “SWIR Geiger-mode APD detectors and cameras for 3D imaging,” in SPIE Sensing Technology + Applications (SPIE, 2014), paper 91140F.
  7. Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
    [Crossref]
  8. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
    [Crossref]
  9. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
    [Crossref]
  10. G. A. Howland, P. B. Dixon, and J. C. Howell, “Photon-counting compressive sensing laser radar for 3D imaging,” Appl. Opt. 50(31), 5917–5920 (2011).
    [Crossref] [PubMed]
  11. R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83 (2008).
  12. F. Marsili, V. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-Infrared Single-Photon Detection with Tungsten Silicide Superconducting Nanowires,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1H.1.
  13. L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
    [Crossref] [PubMed]
  14. I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
    [Crossref]
  15. E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
    [Crossref] [PubMed]
  16. V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
    [Crossref]
  17. W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
    [Crossref] [PubMed]
  18. C. Li, W. Yin, and Y. Zhang, 18. C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).
  19. W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing 2010 (SPIE, 2010), 10.
  20. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  21. T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
    [Crossref]
  22. R.-B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka, and M. Sasaki, “Spectrally resolved Hong-Ou-Mandel interference between independent photon sources,” Opt. Express 23(22), 28836–28848 (2015).
    [Crossref] [PubMed]
  23. P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41(21), 5074–5077 (2016).
    [Crossref] [PubMed]

2017 (5)

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

2016 (2)

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41(21), 5074–5077 (2016).
[Crossref] [PubMed]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

2015 (4)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

R.-B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka, and M. Sasaki, “Spectrally resolved Hong-Ou-Mandel interference between independent photon sources,” Opt. Express 23(22), 28836–28848 (2015).
[Crossref] [PubMed]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

2013 (2)

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

2011 (1)

2009 (2)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

2008 (1)

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83 (2008).

2006 (1)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Allmaras, J. P.

Anzagira, L.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Baraniuk, R. G.

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83 (2008).

Bellei, F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Berggren, K. K.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Beyer, A. D.

Bonczyski, M.

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

Briggs, R. M.

Bulgarini, G.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Buller, G. S.

Calandri, N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Candes, E. J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Charbon, E.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
[Crossref]

Chen, L.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

Dane, A. E.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Dauler, E. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Dixon, P. B.

Dobrovolskiy, S. M.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Dorenbos, S. N.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
[Crossref]

Fossum, E. R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

Fujiwara, M.

Gemmell, N. R.

Gerrits, T.

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41(21), 5074–5077 (2016).
[Crossref] [PubMed]

R.-B. Jin, T. Gerrits, M. Fujiwara, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, R. Shimizu, M. Takeoka, and M. Sasaki, “Spectrally resolved Hong-Ou-Mandel interference between independent photon sources,” Opt. Express 23(22), 28836–28848 (2015).
[Crossref] [PubMed]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
[Crossref]

Goltsman, G.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Gourgues, R. B. M.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Hadfield, R. H.

Hamilton, S. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Hendershott, P.

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Howell, J. C.

Howland, G. A.

Jin, R.-B.

Kerman, A. J.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
[Crossref]

Korzh, B.

Kotsubo, V.

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

Krichel, N. J.

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Kuo, P. S.

Lita, A. E.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, X.-F.

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Los, J. W. N.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Ma, J.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

Marsili, F.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Masoodian, S.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

McCarthy, A.

McCaughan, A. N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Miki, S.

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Mirin, R. P.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Nam, S. W.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41(21), 5074–5077 (2016).
[Crossref] [PubMed]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
[Crossref]

Radebaugh, R.

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

Ren, X.

Robinson, B. S.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Romberg, J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Santavicca, D. F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Sasaki, M.

Schwarzer, D.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

Shalm, L. K.

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Shaw, M.

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Shaw, M. D.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shimizu, R.

Steinmetz, V.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Stevens, M. J.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

Takeoka, M.

Tanner, M. G.

Tao, T.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Terai, H.

Ullom, J. N.

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths,” Opt. Lett. 41(21), 5074–5077 (2016).
[Crossref] [PubMed]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Wakabayashi, R.

Wang, C.

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Wang, H.-Z.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Wilson, B.

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

Wodtke, A. M.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

Wollman, E. E.

Yamashita, T.

Yang, J. K. W.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Yao, X.-R.

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Yu, W.-K.

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Zadeh, I. E.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Zhai, G.-J.

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Zhai, Y.

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Zhao, Q.-Y.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Zhu, D.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Zizza, R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

Zwiller, V.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science,” Acc. Chem. Res. 50(6), 1400–1409 (2017).
[Crossref] [PubMed]

APL Photonics (1)

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

IEEE Signal Process. Mag. (1)

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83 (2008).

IEEE Trans. Appl. Supercond. (1)

V. Kotsubo, R. Radebaugh, P. Hendershott, M. Bonczyski, B. Wilson, S. W. Nam, and J. N. Ullom, “Compact 2.2 K Cooling System for Superconducting Nanowire Single Photon Detectors,” IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017).
[Crossref]

IEEE Trans. Inf. Theory (1)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

J. Mod. Opt. (1)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2-3), 364–373 (2009).
[Crossref]

Nat. Photonics (3)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Sci. Rep. (1)

W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai, “Complementary compressive imaging for the telescopic system,” Sci. Rep. 4(1), 5834 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta Image Sensor: Every Photon Counts,” Sensors (Basel) 16(8), 1260 (2016).
[Crossref] [PubMed]

Other (5)

M. A. Itzler, M. Entwistle, U. Krishnamachari, M. Owens, X. Jiang, K. Slomkowski, and S. Rangwala, “SWIR Geiger-mode APD detectors and cameras for 3D imaging,” in SPIE Sensing Technology + Applications (SPIE, 2014), paper 91140F.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008), pp. 44–594.
[Crossref]

F. Marsili, V. Verma, M. J. Stevens, J. A. Stern, M. D. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, and S. W. Nam, “Mid-Infrared Single-Photon Detection with Tungsten Silicide Superconducting Nanowires,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1H.1.

C. Li, W. Yin, and Y. Zhang, 18. C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing 2010 (SPIE, 2010), 10.

Supplementary Material (8)

NameDescription
» Visualization 1       This video shows the vintage light bulb, recorded with a resolution of 32×32 pixels and a frame rate of 10 fps.
» Visualization 1       This video shows the vintage light bulb, recorded with a resolution of 32×32 pixels and a frame rate of 10 fps.
» Visualization 2       This video shows the vintage light bulb, recorded with a resolution of 64×64 pixels and a frame rate of 10 fps.
» Visualization 2       This video shows the vintage light bulb, recorded with a resolution of 64×64 pixels and a frame rate of 10 fps.
» Visualization 3       This video shows the vintage light bulb, recorded with a resolution of 64×64 pixels and a frame rate of 20 fps.
» Visualization 3       This video shows the vintage light bulb, recorded with a resolution of 64×64 pixels and a frame rate of 20 fps.
» Visualization 4       This video shows the full reconstruction of our time-of-flight data as a function of photon arrival time. The left inset shows the spatial distribution of the speckle pattern at a given time delay, indicated by the red line in the right inset.
» Visualization 4       This video shows the full reconstruction of our time-of-flight data as a function of photon arrival time. The left inset shows the spatial distribution of the speckle pattern at a given time delay, indicated by the red line in the right inset.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental Setup. An object is projected onto the DMD. Collection optics guides the reflected photon stream into a multimode fiber and towards a superconducting nanowire detector (SNSPD), cooled to 1 K. The data collection is done using a standard single photon counter (SPC) or via a custom digital to analog converter (DAC) and data acquisition hardware (DAQ).
Fig. 2
Fig. 2 Experimental results of still images. (a) Conventional photograph a vintage light bulb and its filament. (b)-(d) 1024 × 1024 images of the vintage light bulb filament for sampling ratios of 4%, 1% and 0.25%, respectively.
Fig. 3
Fig. 3 Experimental setup to measure the time-of-flight on sub-nanosecond time scales. Distinct frequency modes of a pulsed laser with 10 MHz repetition rate are converted into distinct time modes by use of a dispersion compensation module. The resulting light is directed to a diffuser and subsequently imaged onto a DMD. The return photon signal is collected into a single mode fiber and detected with an SNSPD. Time tagging electronics allowed sorting the returned photons into individual time bins.
Fig. 4
Fig. 4 (a) 512x512 pixels image reconstructed at the brightest frame system detection time of 15 ns, corresponding to a wavelength of 1543 nm. The speckle pattern from the diffuser can clearly be observed. (b) Pulsed laser spectrum (in time) after the DCM. A video accompanies this paper and shows the image reconstructions at all time bins. The time bin width was 128 ps. The red lines correspond to a system detection time of 5.2 ns and 15ns, respectively. (c)-(f) Zoom into the central region of the diffusor at the brightest frame system detection time of 15 ns at sampling ratios of 3.6%, 1.8%, 1.2% and 0.9%, respectively.
Fig. 5
Fig. 5 (a)-(d) Acquired time histograms for the first four DMD patterns. (e)-(h) Zoom into the central region of the diffusor at a system detection time of 5.2 ns and sampling ratios of 3.6%, 1.8%, 1.2% and 0.9%, respectively

Tables (1)

Tables Icon

Table 1 Summary of sampling ratio, photon and background count per DMD pattern for 10 fps and 20 fps video acquisition at a resolution of 32x32 pixels and 64x64 pixels, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y=Φx,
TV(x)= [ x T , y T ,2 t T ] T x 1 ,

Metrics