Abstract

This work demonstrates a simple dual-wavelength random distributed feedback fiber laser via excitation of the Raman-erbium hybrid gain by a single pump source. Lasing wavelengths at 1568 nm and 1595 nm with 48.48 dBm maximum OSNR were generated without the need for physical reflectors. Enhancements were performed using pump power distribution and a seeded feedback to reduce the peak disparity to only 0.16 dB. The long cavity hybrid random laser with its balanced and broadly spaced dual-wavelength output offers immense potential for long distance dual laser applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. Mahamd Adikan, and M. A. Mahdi
Opt. Express 19(15) 14152-14159 (2011)

Dual-wavelength distributed feedback fiber laser based on double exposure and equivalent phase shift method

Linghui Jia, Zuowei Yin, Liang Zhang, and Xiangfei Chen
Appl. Opt. 50(4) 604-607 (2011)

Effects of Raman pump power distribution on output spectrum in a multi-wavelength BRFL

G. Mamdoohi, A. R. Sarmani, M. H. Abu Bakar, and M. A. Mahdi
Opt. Express 23(20) 25570-25581 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
    [Crossref] [PubMed]
  2. S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
    [Crossref]
  3. D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
    [Crossref]
  4. F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
    [Crossref]
  5. S. Ma, F. Xie, L. Chen, Y. Z. Wang, L. L. Dong, and K. Q. Zhao, “Development of dual-wavelength fiber ring laser and its application to step-height measurement using self-mixing interferometry,” Opt. Express 24(6), 5693–5698 (2016).
    [Crossref] [PubMed]
  6. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  7. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
    [Crossref]
  8. Y. Xu, L. Zhang, L. Chen, and X. Bao, “Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser,” Opt. Express 25(14), 15828–15837 (2017).
    [Crossref] [PubMed]
  9. I. Aporta Litago, R. A. Perez-Herrera, M. A. Quintela, M. Lopez-Amo, and J. M. Lopez-Higuera, “Tunable Dual-Wavelength Random Distributed Feedback Fiber Laser With Bidirectional Pumping Source,” J. Lightwave Technol. 34(17), 4148–4153 (2016).
    [Crossref]
  10. S. Sugavanam, M. Z. Zulkifli, and D. V. Churkin, “Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser,” Laser Phys. 26(1), 015101 (2016).
    [Crossref]
  11. I. A. Litago, M. Á. Quintela, H. S. Roufael, and J.-M. Lopez-Higuera, “Stability study of ultra-long Random distributed feedback fiber laser based on Erbium fiber,” in Workshop on Specialty Optical Fibers and Their Applications (OSA, 2015), p. WT4A.18.
    [Crossref]
  12. S. Qin, Y. Tang, and D. Chen, “Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber,” Chin. Opt. Lett. 4, 50–52 (2006).
  13. S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
    [Crossref]
  14. Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
    [Crossref]
  15. Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
    [Crossref]
  16. S. Pan, C. Lou, and Y. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express 14(3), 1113–1118 (2006).
    [Crossref] [PubMed]
  17. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, and M. Têtu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [Crossref]
  18. P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
    [Crossref] [PubMed]
  19. M. Bravo, V. de Miguel Soto, A. Ortigosa, and M. Lopez-Amo, “Fully Switchable Multi-Wavelength Fiber Lasers Based on Random Distributed Feedback for Sensors Interrogation,” J. Lightwave Technol. 33(12), 2598–2604 (2015).
    [Crossref]
  20. M. H. Abu Bakar, F. R. Mahamd Adikan, and M. Mahdi, “Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier,” IEEE Photonics J. 4(3), 1042–1050 (2012).
    [Crossref]
  21. A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
    [Crossref]
  22. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).
  23. L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
    [Crossref]
  24. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
    [Crossref] [PubMed]
  25. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).
  26. V. R. Supradeepa, “Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise,” Opt. Express 21(4), 4677–4687 (2013).
    [Crossref] [PubMed]

2017 (1)

2016 (5)

I. Aporta Litago, R. A. Perez-Herrera, M. A. Quintela, M. Lopez-Amo, and J. M. Lopez-Higuera, “Tunable Dual-Wavelength Random Distributed Feedback Fiber Laser With Bidirectional Pumping Source,” J. Lightwave Technol. 34(17), 4148–4153 (2016).
[Crossref]

S. Sugavanam, M. Z. Zulkifli, and D. V. Churkin, “Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser,” Laser Phys. 26(1), 015101 (2016).
[Crossref]

S. Ma, F. Xie, L. Chen, Y. Z. Wang, L. L. Dong, and K. Q. Zhao, “Development of dual-wavelength fiber ring laser and its application to step-height measurement using self-mixing interferometry,” Opt. Express 24(6), 5693–5698 (2016).
[Crossref] [PubMed]

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

2015 (1)

2014 (3)

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

2013 (3)

2012 (1)

M. H. Abu Bakar, F. R. Mahamd Adikan, and M. Mahdi, “Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier,” IEEE Photonics J. 4(3), 1042–1050 (2012).
[Crossref]

2011 (1)

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

2010 (3)

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

2008 (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

2007 (1)

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

2006 (3)

2004 (1)

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

2000 (1)

Abu Bakar, M. H.

M. H. Abu Bakar, F. R. Mahamd Adikan, and M. Mahdi, “Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier,” IEEE Photonics J. 4(3), 1042–1050 (2012).
[Crossref]

Alcon-Camas, M.

Ania-Castañón, J. D.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

Aporta Litago, I.

Armitage, R. P.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
[Crossref] [PubMed]

Bao, X.

Bellemare, A.

Bravo, M.

Chao, L.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Chaudhuri, P. R.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Chen, D.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

S. Qin, Y. Tang, and D. Chen, “Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber,” Chin. Opt. Lett. 4, 50–52 (2006).

Chen, L.

Chen, W.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Chun-Liu, Z.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Churkin, D. V.

S. Sugavanam, M. Z. Zulkifli, and D. V. Churkin, “Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser,” Laser Phys. 26(1), 015101 (2016).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
[Crossref] [PubMed]

Danson, F. M.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

de Miguel Soto, V.

Disney, M.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Dong, L. L.

Dong, X.

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

El-Taher, A. E.

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

Fan, W.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Feng, Z.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Fotiadi, A. A.

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[Crossref]

Gao, Y.

Gaulton, R.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Gunawan, O.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Harper, P.

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

Hong, N. J.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Huang, C.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

Ismagulov, A. E.

Jiang, M.

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
[Crossref] [PubMed]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

Karásek, M.

LaRochelle, S.

Lewis, P.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Li, C.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Li, K.

Lin, W.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Liu, D.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Liu, Y.

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

Lopez-Amo, M.

Lopez-Higuera, J. M.

Lou, C.

Ma, S.

Mahamd Adikan, F. R.

M. H. Abu Bakar, F. R. Mahamd Adikan, and M. Mahdi, “Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier,” IEEE Photonics J. 4(3), 1042–1050 (2012).
[Crossref]

Mahdi, M.

M. H. Abu Bakar, F. R. Mahamd Adikan, and M. Mahdi, “Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier,” IEEE Photonics J. 4(3), 1042–1050 (2012).
[Crossref]

Mezentsev, V. K.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

Mo, S.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Ngo, N. Q.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Nikulin, M.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Ortigosa, A.

Pan, S.

Pearson, G.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Perez-Herrera, R. A.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
[Crossref] [PubMed]

Qiao, T.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Qin, S.

S. Qin, Y. Tang, and D. Chen, “Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber,” Chin. Opt. Lett. 4, 50–52 (2006).

Quintela, M. A.

Ramirez, A. F.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Rochette, M.

Shum, P.

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

Shum, P. P.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

Su, H.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

Sugavanam, S.

S. Sugavanam, M. Z. Zulkifli, and D. V. Churkin, “Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser,” Laser Phys. 26(1), 015101 (2016).
[Crossref]

Supradeepa, V. R.

Tang, Y.

S. Qin, Y. Tang, and D. Chen, “Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber,” Chin. Opt. Lett. 4, 50–52 (2006).

Têtu, M.

Tjin, S. C.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

Vatnik, I. D.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Wang, L.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

Wang, P.

Wang, S.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Wang, Y. Z.

Weng, D.

Xie, F.

Xin, G.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Xinyong, D.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Xiufeng, Y.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Xu, S.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Xu, Y.

Yang, C.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, T.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, Z.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yu, X.

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

Zhang, L.

Zhang, W.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Zhao, K. Q.

Zhou, X.

Zulkifli, M. Z.

S. Sugavanam, M. Z. Zulkifli, and D. V. Churkin, “Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser,” Laser Phys. 26(1), 015101 (2016).
[Crossref]

Agric. For. Meteorol. (1)

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Appl. Phys. B (1)

Y. Liu, X. Dong, M. Jiang, X. Yu, and P. Shum, “Multi-wavelength erbium-doped fiber laser based on random distributed feedback,” Appl. Phys. B 122(9), 240 (2016).
[Crossref]

Appl. Phys. Express (1)

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Chin. Opt. Lett. (1)

S. Qin, Y. Tang, and D. Chen, “Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber,” Chin. Opt. Lett. 4, 50–52 (2006).

IEEE Photonics J. (2)

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly Er3+/Yb3+ Co-Doped Phosphate Fiber Laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

M. H. Abu Bakar, F. R. Mahamd Adikan, and M. Mahdi, “Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier,” IEEE Photonics J. 4(3), 1042–1050 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A Dual-Wavelength Fiber Laser Sensor System for Measurement of Temperature and Strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

J. Lightwave Technol. (3)

Laser Phys. (2)

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24(11), 115101 (2014).
[Crossref]

S. Sugavanam, M. Z. Zulkifli, and D. V. Churkin, “Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser,” Laser Phys. 26(1), 015101 (2016).
[Crossref]

Nat. Photonics (2)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[Crossref]

Opt. Commun. (1)

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230(4–6), 313–317 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rep. (1)

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Phys. Rev. A – At. Mol. Opt. Phys. (2)

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A – At. Mol. Opt. Phys. 84(2), 1–4 (2011).

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A – At. Mol. Opt. Phys. 77(3), 1–5 (2008).

Other (1)

I. A. Litago, M. Á. Quintela, H. S. Roufael, and J.-M. Lopez-Higuera, “Stability study of ultra-long Random distributed feedback fiber laser based on Erbium fiber,” in Workshop on Specialty Optical Fibers and Their Applications (OSA, 2015), p. WT4A.18.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of HRFL.
Fig. 2
Fig. 2 Spectral output of HRFL with pump power variation (0.25-5.50 W) in (a) 3D view and (b) 2D top view.
Fig. 3
Fig. 3 Power development of the HRFL with inset showing a detailed view of power growth at 0 W to 1.5 W.
Fig. 4
Fig. 4 Experimental setup of HRFL with ratio variation of inward pumping scheme with selective wavelength reflector (SWR).
Fig. 5
Fig. 5 Characterization of Lightwaves2020 L-band tunable optical filter (TOF) transmission loss.
Fig. 6
Fig. 6 Spectral results of HRFL with pump ratio variation scheme assisted by selective wavelength loop reflector in (a)-(b) front view, (c) 3-D, and (d) top view.
Fig. 7
Fig. 7 Power development of the enhanced HRFL with inset showing a detailed view of power growth from 0 W to 1.5 W.

Tables (3)

Tables Icon

Table 1 Comparison between 1565 nm peak and 1595 nm peak.

Tables Icon

Table 2 Comparison between 1565 nm peak and 1595 nm peak with RPU 2 at 2.65 W.

Tables Icon

Table 3 Comparison between HRFL and enhanced HRFL performance.

Metrics