Abstract

Time-Correlated Single Photon Counting (TCSPC) is an essential tool in many scientific applications, where the recording of optical pulses with picosecond precision is required. Unfortunately, a key issue has to be faced: distortion phenomena can affect TCSPC experiments at high count rates. In order to avoid this problem, TCSPC experiments have been commonly carried out by limiting the maximum operating frequency of a measurement channel below 5% of the excitation frequency, leading to a long acquisition time. Recently, it has been demonstrated that matching the detector dead time to the excitation period allows to keep distortion around zero regardless of the rate of impinging photons. This solution paves the way to unprecedented measurement speed in TCSPC experiments. In this scenario, the front-end circuits that drive the detector play a crucial role in determining the performance of the system, both in terms of measurement speed and timing performance. Here we present two fully integrated front-end circuits for Single Photon Avalanche Diodes (SPADs): a fast Active Quenching Circuit (AQC) and a fully-differential current pick-up circuit. The AQC can apply very fast voltage variations, as short as 1.6ns, to reset external custom-technology SPAD detectors. A fast reset, indeed, is a key parameter to maximize the measurement speed. The current pick-up circuit is based on a fully differential structure which allows unprecedented rejection of disturbances that typically affect SPAD-based systems at the end of the dead time. The circuit permits to sense the current edge resulting from a photon detection with picosecond accuracy and precision even a few picoseconds after the end of the dead time imposed by the AQC. This is a crucial requirement when the system is operated at high rates. Both circuits have been deeply characterized, especially in terms of achievable measurement speed and timing performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s

Giulia Acconcia, Ivan Rech, Angelo Gulinatti, and Massimo Ghioni
Opt. Express 24(16) 17819-17831 (2016)

Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova
Opt. Express 14(12) 5021-5030 (2006)

Increasing the collection efficiency of time-correlated single-photon counting with single-photon avalanche diodes using immersion lenses

Charles Pichette, Andrea Giudice, Simon Thibault, and Yves Bérubé-Lauzière
Appl. Opt. 55(33) 9555-9562 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Science & Business Media, 2005).
  2. W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
    [Crossref] [PubMed]
  3. J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
    [Crossref] [PubMed]
  4. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
    [Crossref] [PubMed]
  5. A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).
  6. A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
    [Crossref] [PubMed]
  7. D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
    [Crossref]
  8. A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
    [Crossref]
  9. F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
    [Crossref]
  10. A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007).
    [Crossref]
  11. N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
    [Crossref] [PubMed]
  12. D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).
  13. P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
    [Crossref] [PubMed]
  14. M. Crotti, I. Rech, and M. Ghioni, “Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting,” IEEE J. Solid-State Circuits 47(3), 699–708 (2012).
    [Crossref]
  15. C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18??m CMOS technology,” in Tech. Dig. - Int. Electron Devices Meet. IEDM (2010), pp. 340–343.
    [Crossref]
  16. A. Eisele and R. Henderson, “185 MHz Count Rate, 139 dB Dynamic Range Single-Photon Avalanche Diode with Active Quenching Circuit in 130nm CMOS Technology,” in Proc. Int. Image Sens. Work. (2011), pp. 278–280.
  17. E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
    [Crossref]
  18. G. Acconcia, I. Rech, A. Gulinatti, and M. Ghioni, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s,” Opt. Express 24(16), 17819–17831 (2016).
    [Crossref] [PubMed]
  19. G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
    [Crossref] [PubMed]
  20. G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
    [Crossref]
  21. G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
    [Crossref]
  22. A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
    [Crossref]
  23. L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
    [Crossref]

2018 (1)

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

2017 (3)

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
[Crossref]

2016 (3)

G. Acconcia, I. Rech, A. Gulinatti, and M. Ghioni, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s,” Opt. Express 24(16), 17819–17831 (2016).
[Crossref] [PubMed]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
[Crossref] [PubMed]

2015 (3)

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
[Crossref] [PubMed]

2013 (1)

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
[Crossref]

2012 (5)

M. Crotti, I. Rech, and M. Ghioni, “Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting,” IEEE J. Solid-State Circuits 47(3), 699–708 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

2009 (2)

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

2007 (1)

A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007).
[Crossref]

2005 (1)

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
[Crossref] [PubMed]

Acconcia, G.

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
[Crossref]

G. Acconcia, I. Rech, A. Gulinatti, and M. Ghioni, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s,” Opt. Express 24(16), 17819–17831 (2016).
[Crossref] [PubMed]

P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
[Crossref] [PubMed]

Ameer-Beg, S. M.

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Antonioli, S.

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

Arlt, J.

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

Becker, W.

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

Biasi, R.

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Boso, G.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
[Crossref]

Bronzi, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Cammi, C.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Ceccarelli, F.

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

Ciccarella, P.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Cominelli, A.

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

Cova, S.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Crotti, M.

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

M. Crotti, I. Rech, and M. Ghioni, “Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting,” IEEE J. Solid-State Circuits 47(3), 699–708 (2012).
[Crossref]

Dalla Mora, A.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
[Crossref]

Della Frera, A.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
[Crossref]

Dutton, N. A. W.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
[Crossref] [PubMed]

Eisele, A.

A. Eisele and R. Henderson, “185 MHz Count Rate, 139 dB Dynamic Range Single-Photon Avalanche Diode with Active Quenching Circuit in 130nm CMOS Technology,” in Proc. Int. Image Sens. Work. (2011), pp. 278–280.

Ghioni, M.

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
[Crossref]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, A. Gulinatti, and M. Ghioni, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s,” Opt. Express 24(16), 17819–17831 (2016).
[Crossref] [PubMed]

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
[Crossref] [PubMed]

M. Crotti, I. Rech, and M. Ghioni, “Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting,” IEEE J. Solid-State Circuits 47(3), 699–708 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Giudice, A.

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Grant, L. A.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Gulinatti, A.

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, A. Gulinatti, and M. Ghioni, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s,” Opt. Express 24(16), 17819–17831 (2016).
[Crossref] [PubMed]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Gyongy, I.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
[Crossref] [PubMed]

Haslett, J. W.

A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007).
[Crossref]

Henderson, R.

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

A. Eisele and R. Henderson, “185 MHz Count Rate, 139 dB Dynamic Range Single-Photon Avalanche Diode with Active Quenching Circuit in 130nm CMOS Technology,” in Proc. Int. Image Sens. Work. (2011), pp. 278–280.

Henderson, R. K.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
[Crossref] [PubMed]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Labanca, I.

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
[Crossref]

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Levitt, J. A.

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Li, D.

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

MacCagnani, P.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Marangoni, S.

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Matthews, D. R.

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Miari, L.

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

Niclass, C.

C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18??m CMOS technology,” in Tech. Dig. - Int. Electron Devices Meet. IEDM (2010), pp. 340–343.
[Crossref]

Panzeri, F.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Parmesan, L.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
[Crossref] [PubMed]

Periasamy, A.

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
[Crossref] [PubMed]

Peronio, P.

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
[Crossref] [PubMed]

Rae, B.

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

Rech, I.

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
[Crossref]

G. Acconcia, I. Rech, A. Gulinatti, and M. Ghioni, “High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s,” Opt. Express 24(16), 17819–17831 (2016).
[Crossref] [PubMed]

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
[Crossref] [PubMed]

M. Crotti, I. Rech, and M. Ghioni, “Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting,” IEEE J. Solid-State Circuits 47(3), 699–708 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Renshaw, D.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Richardson, J.

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

Richardson, J. A.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Ruggeri, A.

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Simmerle, G.

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Soga, M.

C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18??m CMOS technology,” in Tech. Dig. - Int. Electron Devices Meet. IEDM (2010), pp. 340–343.
[Crossref]

Suhling, K.

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Tosi, A.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
[Crossref]

Tyndall, D.

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

Villa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Wallrabe, H.

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
[Crossref] [PubMed]

Webster, E. A. G.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Yousif, A. S.

A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007).
[Crossref]

Zappa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

Curr. Opin. Biotechnol. (2)

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
[Crossref] [PubMed]

Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. (1)

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13??m CMOS imaging technology,” Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 55, 122–123 (2012).

Electron. Lett. (1)

G. Acconcia, I. Rech, I. Labanca, and M. Ghioni, “32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes,” Electron. Lett. 53(5), 328–329 (2017).
[Crossref]

IEEE Electron Device Lett. (1)

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

IEEE J. Solid-State Circuits (1)

M. Crotti, I. Rech, and M. Ghioni, “Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting,” IEEE J. Solid-State Circuits 47(3), 699–708 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Ceccarelli, G. Acconcia, I. Labanca, A. Gulinatti, M. Ghioni, and I. Rech, “152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode,” IEEE Photonics Technol. Lett. 30(4), 391–394 (2018).
[Crossref]

IEEE Sens. J. (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

L. Miari, S. Antonioli, I. Labanca, M. Crotti, I. Rech, and M. Ghioni, “Eight-Channel Fully Adjustable Pulse Generator,” IEEE Trans. Instrum. Meas. 64(9), 2399–2408 (2015).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007).
[Crossref]

J. Microsc. (1)

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (2)

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. MacCagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

A. Giudice, R. Biasi, I. Rech, S. Marangoni, I. Labanca, G. Simmerle, S. Cova, R. Biasi, I. Rech, S. Marangoni, I. Labanca, and G. Simmerle, “Versatile electronic module for the operation of any silicon single photon avalanche diode,” J. Mod. Opt. 340, 2 (2009).

Opt. Express (1)

Rev. Sci. Instrum. (3)

A. Cominelli, G. Acconcia, P. Peronio, M. Ghioni, and I. Rech, “High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis,” Rev. Sci. Instrum. 88(12), 123701 (2017).
[Crossref] [PubMed]

P. Peronio, G. Acconcia, I. Rech, and M. Ghioni, “Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization,” Rev. Sci. Instrum. 86(11), 113101 (2015).
[Crossref] [PubMed]

G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, M. Ghioni, G. Acconcia, I. Labanca, I. Rech, A. Gulinatti, and M. Ghioni, “Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes,” Rev. Sci. Instrum. 88(2), 026103 (2017).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys. 191, 61–67 (2013).
[Crossref]

Sensors (Basel) (1)

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors (Basel) 16(7), E1122 (2016).
[Crossref] [PubMed]

Other (3)

C. Niclass and M. Soga, “A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18??m CMOS technology,” in Tech. Dig. - Int. Electron Devices Meet. IEDM (2010), pp. 340–343.
[Crossref]

A. Eisele and R. Henderson, “185 MHz Count Rate, 139 dB Dynamic Range Single-Photon Avalanche Diode with Active Quenching Circuit in 130nm CMOS Technology,” in Proc. Int. Image Sens. Work. (2011), pp. 278–280.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Science & Business Media, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the proposed AQC. It features three distinct logic blocks, biased at 1.8V rail-to-rail, namely a sense stage, a high-side logic and a low-side logic, that control the operation of the AQC, while two high-voltage transistors (MR and MQ) are used to control the voltage level on the SPAD cathode. The pick-up circuit connected at the anode of the SPAD is used to sense the avalanche current generated by the detector and represents the first stage of the time-measurement electronics.
Fig. 2
Fig. 2 Schematic of the differential pick-up circuit used to sense the avalanche current of the detector from its anode terminal. The pick-up is constituted by two identical trans-impedance amplifiers (TIA1 and TIA2) that read the current coming from two SPADs. The first detector is directly connected to the AQC and is able to detect photons (“active” SPAD), while the other one is kept off and used as dummy cell to replicate the parasitics of the active detector. In this way, any disturbance generated by the AQC gives rise to a common-mode signal at the comparator input and is rejected
Fig. 3
Fig. 3 Layout of the differential pick-up circuit, including the two trans-impedance amplifiers and the comparator
Fig. 4
Fig. 4 Voltage transient at the detector cathode when a photon is detected. The AQC brings the SPAD below breakdown for a programmable hold-off time (here 10 ns), then the initial bias condition of the device is restored in about 2.5 ns (tRESET)
Fig. 5
Fig. 5 Normalized distributions of recorded photons under uniform illumination (black curve) and time zoom around the rising edge (grey curve). The histogram has been recorded by turning on the detector periodically for 40ns within a much longer period and exploiting a LED to generate a uniform background light. The voltage threshold of the comparator (Vth in Fig. 2) is 200 mV
Fig. 6
Fig. 6 Histograms obtained with a pulsed illumination at different excitation instants, spaced at steps of 100 ps. Here the x-axis represents the measured arrival time of photons, so the space between histograms is 100 ps only if no distortion occurs. Different colors indicate different phases where the laser excitation takes place. The voltage threshold of the comparator (Vth in Fig. 2) is 200 mV
Fig. 7
Fig. 7 Detailed analysis of the measurement reported in Fig. 6. a) displacement of the peak positions of the histograms with respect to their ideal position (it is the difference between the peak position expressed as a function of tmeas and texc); b) timing jitter expressed in terms of FWHM of the histograms; c) total number of counts collected in each histogram. The curves are plotted as a function of the excitation instant texc
Fig. 8
Fig. 8 Comparison between the sum of the histograms reported in Fig. 6 (black curve) and the histogram obtained for a constant illumination (see Fig. 5), here multiplied by a scale factor (grey curve)
Fig. 9
Fig. 9 Average number of recorded photons in a period (Prec) as a function of the average number of photons impinging on the SPAD (P). The curves refer to the system described in the paper when operated with a dead time matched to an excitation period equal to 12.5 ns. τ is the fluorescence time-constant of the luminous pulse analyzed during the TCSPC experiment

Metrics