Abstract

We proposed and experimentally demonstrated paralleled Mach-Zehnder interferometers (MZIs) in few-mode multicore fiber (FM-MCF) for temperature and strain discriminative sensing. A section of FM-MCF is sandwich-spliced between two single-mode multicore fiber (SM-MCF) with a rotational offset. The arbitrarily controlled angular misalignment generates intentional intermodal interferences in outer cores of the FM-MCF thus multiple MZI structures are implemented. Experimental results show that the temperature sensitivities are 105.8 pm/°C and 223.6 pm/°C for two outer cores, strain sensitivity is 13.96 pm/με for the outer core 1 and 11.7 pm/με for the outer core 2, respectively. Due to the low condition number of the cross coefficient matrix dependent on the temperature and strain response indexes, the temperature-strain cross sensitivity can be efficiently eliminated. In addition, the structure’s fabrication process is simple, cost effective, and repeatable. The sensing structure can be applied to a wide range of measurements and is expected to develop potentials by building a higher dimensional matrix with more cores.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer

Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, Xiaoyong Zhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li
Opt. Express 22(2) 1680-1686 (2014)

Up-taper-based Mach–Zehnder interferometer for temperature and strain simultaneous measurement

Zexin Kang, Xiaodong Wen, Chao Li, Jiang Sun, Jing Wang, and Shuisheng Jian
Appl. Opt. 53(12) 2691-2695 (2014)

Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing

Li Duan, Peng Zhang, Ming Tang, Ruoxu Wang, Zhiyong Zhao, Songnian Fu, Lin Gan, Benpeng Zhu, Weijun Tong, Deming Liu, and Perry Ping Shum
Opt. Express 24(18) 20210-20218 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, M. Yang, D. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  2. M. Janik, M. Koba, P. Mikulic, W. J. Bock, and M. Śmietana, “Combined long-period grating and micro-cavity in-line Mach-Zehnder interferometer for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS) (IEEE, 2017), pp. 1–4.
  3. D. Wu, T. Zhu, M. Deng, D.-W. Duan, L.-L. Shi, J. Yao, and Y.-J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [Crossref] [PubMed]
  4. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
    [Crossref]
  5. Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun. 364, 72–75 (2016).
    [Crossref]
  6. N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
    [Crossref]
  7. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [Crossref] [PubMed]
  8. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [Crossref] [PubMed]
  9. A. A. Jasim, J. Faruki, M. F. Ismail, and H. Ahmad, “Fabrication and characterization of microbent inline microfiber interferometer for compact temperature and current sensing applications,” J. Lightwave Technol. 35(11), 2150–2155 (2017).
    [Crossref]
  10. Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
    [Crossref]
  11. Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
    [Crossref]
  12. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  13. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [Crossref] [PubMed]
  14. L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  15. H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
    [Crossref]
  16. W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
    [Crossref] [PubMed]
  17. R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
    [Crossref]
  18. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
    [Crossref]
  19. Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
    [Crossref]
  20. L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
    [Crossref] [PubMed]
  21. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [Crossref] [PubMed]
  22. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  23. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
    [Crossref]
  24. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  25. E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
    [Crossref]
  26. D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
    [Crossref] [PubMed]
  27. X. Shu, Y. Liu, D. Zhao, B. Gwandu, F. Floreani, L. Zhang, and I. Bennion, “Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement,” Opt. Lett. 27(9), 701–703 (2002).
    [Crossref] [PubMed]
  28. I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
    [Crossref]

2018 (1)

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

2017 (2)

2016 (3)

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun. 364, 72–75 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

2015 (1)

2014 (1)

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

2013 (4)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[Crossref] [PubMed]

2012 (2)

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
[Crossref] [PubMed]

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

2011 (2)

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

D. Wu, T. Zhu, M. Deng, D.-W. Duan, L.-L. Shi, J. Yao, and Y.-J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (3)

2007 (2)

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

2004 (1)

2002 (1)

1997 (1)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

1996 (1)

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

Ahmad, H.

Akamatsu, T.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

André, R. M.

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Bennion, I.

Biazoli, C. R.

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Chehura, E.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Cheng, Y.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Choi, H. Y.

Chung, Y.

Cordeiro, C. M.

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Culshaw, B.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

Dai, Y.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

Deng, L.

Deng, M.

Deng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Dong, B.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Duan, D.-W.

Duan, L.

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Faruki, J.

Feng, Z.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Floreani, F.

Frazão, O.

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Fu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Fu, X.

Gan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

Geng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Guo, T.

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Gwandu, B.

Hu, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hu, M.

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Huang, T.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hwang, D.

Ishida, I.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

Ismail, M. F.

James, S. W.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Jang, H. S.

Jasim, A. A.

Jin, W.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

Kersey, A.

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

Kim, J. C.

Kim, M. J.

Konstantaki, M.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

Lam, H. Q.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Lee, B. H.

Lee, K. S.

Li, B.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Li, K.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Li, L.

Li, X.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Li, Y.

Liao, C. R.

Liao, H.

Lim, J. H.

Lit, J. W.

Liu, D.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
[Crossref] [PubMed]

Liu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Y. Wang, M. Yang, D. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Liu, W.-K.

Liu, Y.

Lou, W.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun. 364, 72–75 (2016).
[Crossref]

Lu, P.

Ma, Y.

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Marques, M. B.

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Matsuo, S.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

Michie, W. C.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

Moon, D. S.

Moon, S.

Nguyen, L. V.

Ni, W.

Patrick, H.

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

Pedrazzani, J.

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

Qiao, X.

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Rao, Y.-J.

Rong, Q.

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Sasaki, Y.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

Shao, X.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Shen, C.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun. 364, 72–75 (2016).
[Crossref]

Shentu, F.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun. 364, 72–75 (2016).
[Crossref]

Shi, L.-L.

Shu, X.

Shum, P.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Shum, P. P.

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Silva, S. O.

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

Sun, Q.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

Sun, Y.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Takenaga, K.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

Tan, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Tang, M.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Tatam, R. P.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

Thursby, G.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

Tong, L.

Tong, W.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Vengsarkar, A.

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

Wang, D.

Wang, D. N.

Wang, R.

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Wang, Y.

Wang, Z.

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

Wei, H.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Wei, L.

Weng, Y.

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Williams, G.

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

Wo, J.

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

Wu, D.

Wu, Q.

Wu, Z.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Xia, L.

Xie, Z.

Xu, W.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Xu, Z.

Yang, C.

Yang, M.

Yao, J.

You, S.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Yu, C.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Yu, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Zhang, J.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

Zhang, L.

Zhang, N.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Zhang, P.

Zhao, D.

Zhao, Z.

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Zhou, D.-P.

Zhu, B.

Zhu, T.

Appl. Opt. (2)

Appl. Phys. B (1)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

IEEE Photonics J. (1)

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Patrick, G. Williams, A. Kersey, J. Pedrazzani, and A. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett. 8(9), 1223–1225 (1996).
[Crossref]

R. M. André, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. Cordeiro, and O. Frazão, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technol. Lett. 25(2), 155–158 (2013).
[Crossref]

IEEE Sens. J. (3)

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Z. Xu, Q. Sun, J. Wo, Y. Dai, X. Li, and D. Liu, “Volume strain sensor based on spectra analysis of in-fiber modal interferometer,” IEEE Sens. J. 13(6), 2139–2145 (2013).
[Crossref]

Y. Ma, X. Qiao, T. Guo, R. Wang, J. Zhang, Y. Weng, Q. Rong, M. Hu, and Z. Feng, “Mach–Zehnder interferometer based on a sandwich fiber structure for refractive index measurement,” IEEE Sens. J. 12(6), 2081–2085 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG,” Opt. Commun. 364, 72–75 (2016).
[Crossref]

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Opt. Eng. (1)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36(2), 598–610 (1997).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Other (2)

I. Ishida, T. Akamatsu, Z. Wang, Y. Sasaki, K. Takenaga, and S. Matsuo, “Possibility of stack and draw process as fabrication technology for multi-core fiber,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2013), pp. 1–3.
[Crossref]

M. Janik, M. Koba, P. Mikulic, W. J. Bock, and M. Śmietana, “Combined long-period grating and micro-cavity in-line Mach-Zehnder interferometer for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS) (IEEE, 2017), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a). The cross section image of the FM-MCF. (b) Gradient refractive index profile of the FM-MCF
Fig. 2
Fig. 2 The schematic diagram of MZI structures in FM-MCF.
Fig. 3
Fig. 3 (a). The experimental transmission spectra of the MZI in different outer cores, the length of FM-MCF is 36.5 cm. (b) The measured transmission spectra in outer core 1 with different lengths of FM-MCF.
Fig. 4
Fig. 4 The FFT-spatial frequency spectra of the transmission spectrums with different FM-MCF segment length L. (a) L = 68.8 cm; (b) L = 43.6 cm; (c) L = 36.5 cm.
Fig. 5
Fig. 5 Experimental set up for temperature and strain sensing.
Fig. 6
Fig. 6 (a). Measured wavelength shift of outer core 1 as temperature varies at 0.0 μ ε . (b) Measured wavelength shift of outer core 2 as temperature varies at 0.0 μ ε . (c) Temperature responses of the multipath MZIs device, two straight lines are linear fits.
Fig. 7
Fig. 7 (a). Measured wavelength shift of outer core 1 as strain varies at 30 ° C . (b) Measured wavelength shift of outer core 2 as strain varies at 30 ° C . (c) Strain responses of the multipath MZIs device, two straight lines are linear fits.
Fig. 8
Fig. 8 (a). The resonant wavelength dip shift for outer core 1 under two conditions. (b) The resonant wavelength dip shift for outer core 2 under two conditions.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ λ F S R λ 0 2 / ( Δ n e f f L )
Δ n e f f = ξ λ 0 2 / L
I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π Δ n e f f L λ )
Δ φ = 2 π Δ n e f f L λ
λ d i p = 2 Δ n e f f L 2 m + 1
λ d i p , T = λ d i p , T + T λ d i p , T = 2 ( Δ n e f f + n T ) ( L + L ) 2 m + 1 2 Δ n e f f L ( 2 m + 1 )
λ d i p , T = n T Δ n e f f λ d i p
( Δ T Δ ε ) = ( C T 1 C ε 1 C T 2 C ε 2 ) 1 ( Δ λ 1 Δ λ 2 )
( Δ T Δ ε ) = ( -0 .1058 -0 .2236 -0 .01396 -0 .0117 ) -1 ( Δ λ 1 Δ λ 2 )

Metrics