Abstract

Dynamics of laser-induced optical breakdown in the bulk of fused-silica glass irradiated by a sub-nanosecond laser pulse at a wavelength of 790 nm with a fluence of 522 J/cm2 was studied by the femtosecond time-resolved complex interferometry in Nomarski arrangement utilising a Fresnel bi-prism. Evolution of the plasma channel and the development of the free electron density were in focus of the investigation. The measured ultimate length of the plasma channel was equal to 30 μm and almost doubled the length estimated within the moving breakdown model. The history of the transient electron density distribution in the plasma was reconstructed from the phase shift maps using the inverse Abel transform and it revealed further deviation from this model. The core of the plasma channel exhibited at the last stages of the development a considerable level of the electron density up to 2.4×1020 cm−3. The signature of the pre-breakdown phase has been identified as radiation caused by ionization-released electrons interacting with ions and has been demonstrated in solids for the first time in this way. Origin of the discrepancy between the theoretical prediction of the moving breakdown model and the measured values of the channel length is discussed as well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamics of material modifications following laser-breakdown in bulk fused silica

R. A. Negres, M. D. Feit, and S. G. Demos
Opt. Express 18(10) 10642-10649 (2010)

Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times

Franco Docchio, Pietro Regondi, Malcolm R. C. Capon, and John Mellerio
Appl. Opt. 27(17) 3661-3668 (1988)

Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2: Plasma luminescence and shielding

Franco Docchio, Pietro Regondi, Malcolm R. C. Capon, and John Mellerio
Appl. Opt. 27(17) 3669-3674 (1988)

References

  • View by:
  • |
  • |
  • |

  1. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
    [Crossref]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
    [Crossref]
  3. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
    [Crossref]
  4. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725 (2011).
    [Crossref] [PubMed]
  5. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
    [Crossref]
  6. K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
    [Crossref]
  7. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014)
    [Crossref]
  8. P. H. Rose, “Recent experiments in laser supported absorption waves,” Acta Astronaut. 2, 941 (1975).
    [Crossref]
  9. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  10. M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.
  11. Yu. B. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp.,  8, 650–673 (1966).
    [Crossref]
  12. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times,” Appl. Opt. 27, 3661 (1987).
    [Crossref]
  13. C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
    [Crossref]
  14. A. Smith, B. Do, and M. Soderlund, “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application 6453, 645317 (2007).
  15. R. Root and A. Pirri, “Long-time laser induced breakdown of particulate contaminated air,” AIAA, Aerospace Sciences Meeting, 17th, New Orleans, La., Jan. 15–17, 1979, p. 16.
  16. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [Crossref] [PubMed]
  17. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
    [Crossref]
  18. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156 (1982).
    [Crossref]
  19. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956–1959 (1988).
    [Crossref] [PubMed]

2015 (2)

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

2014 (1)

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014)
[Crossref]

2011 (2)

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725 (2011).
[Crossref] [PubMed]

2010 (1)

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

2007 (1)

A. Smith, B. Do, and M. Soderlund, “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application 6453, 645317 (2007).

2006 (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

1996 (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
[Crossref]

1988 (1)

1987 (1)

1982 (1)

1975 (1)

P. H. Rose, “Recent experiments in laser supported absorption waves,” Acta Astronaut. 2, 941 (1975).
[Crossref]

1966 (1)

Yu. B. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp.,  8, 650–673 (1966).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

Bude, J. D.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

Capon, M. R. C.

Carr, C. W.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

Chamboneau, M.

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

Cheng, X.

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

DeMange, P.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

Do, B.

A. Smith, B. Do, and M. Soderlund, “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application 6453, 645317 (2007).

Docchio, F.

Dostal, J.

M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.

Dudzak, R.

M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Gamaly, E. G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Grigorov, Y. V.

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Hayasaki, Y.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725 (2011).
[Crossref] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Ina, H.

Isaka, M.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725 (2011).
[Crossref] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
[Crossref]

Janulewicz, K. A.

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Jiang, T.

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

Juodkazis, S.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725 (2011).
[Crossref] [PubMed]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Kalal, M.

M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956–1959 (1988).
[Crossref] [PubMed]

M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.

Kobayashi, S.

Krupka, M.

M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.

Le, N. T.

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014)
[Crossref]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Mellerio, J.

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
[Crossref]

Nguyen, V. H.

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Noack, J.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
[Crossref]

Nugent, K. A.

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Pirri, A.

R. Root and A. Pirri, “Long-time laser induced breakdown of particulate contaminated air,” AIAA, Aerospace Sciences Meeting, 17th, New Orleans, La., Jan. 15–17, 1979, p. 16.

Raizer, Yu. B.

Yu. B. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp.,  8, 650–673 (1966).
[Crossref]

Regondi, P.

Rehman, Z. U.

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Root, R.

R. Root and A. Pirri, “Long-time laser induced breakdown of particulate contaminated air,” AIAA, Aerospace Sciences Meeting, 17th, New Orleans, La., Jan. 15–17, 1979, p. 16.

Rose, P. H.

P. H. Rose, “Recent experiments in laser supported absorption waves,” Acta Astronaut. 2, 941 (1975).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

Shen, C.

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Smith, A.

A. Smith, B. Do, and M. Soderlund, “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application 6453, 645317 (2007).

Soderlund, M.

A. Smith, B. Do, and M. Soderlund, “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application 6453, 645317 (2007).

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Takeda, M.

Takita, A.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express 19, 5725 (2011).
[Crossref] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
[Crossref]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
[Crossref]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Tran, K. A.

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Ullschmied, J.

M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.

Vogel, A.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
[Crossref]

Xu, Z.

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

Acta Astronaut. (1)

P. H. Rose, “Recent experiments in laser supported absorption waves,” Acta Astronaut. 2, 941 (1975).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

C. Shen, M. Chamboneau, X. Cheng, Z. Xu, and T. Jiang, “Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica,” Appl. Phys. Lett. 107, 111101 (2015).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[Crossref]

Opt. Eng. (1)

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014)
[Crossref]

Opt. Express (1)

Opt. Mat. Express (1)

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mat. Express 1, 1399 (2011).
[Crossref]

Phys. Rev. B (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application (1)

A. Smith, B. Do, and M. Soderlund, “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Application 6453, 645317 (2007).

Proc. SPIE (1)

K. A. Tran, Y. V. Grigorov, V. H. Nguyen, Z. U. Rehman, N. T. Le, and K. A. Janulewicz, “Time-resolved shadowgraphy of optical breakdown in fused silica,” Proc. SPIE 9532, 953205 (2015).
[Crossref]

Sov. Phys. Usp. (1)

Yu. B. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp.,  8, 650–673 (1966).
[Crossref]

Other (2)

M. Kalal, M. Krupka, J. Dostal, R. Dudzak, and J. Ullschmied, “Complex interferometry principles and its potential in case of reference interferograms availability, ” in Proceeding of the First European Physical Society Conference on Plasma Diagnostics, ed. (Proceedings of Science 2015) 014.

R. Root and A. Pirri, “Long-time laser induced breakdown of particulate contaminated air,” AIAA, Aerospace Sciences Meeting, 17th, New Orleans, La., Jan. 15–17, 1979, p. 16.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The setup of the Nomarski interferometer based on a Fresnel bi-prism dedicated to the time-resolved diagnostic in a pump-probe arrangement; L: lens, MO: microscope objective, BS: beam splitter, BPF: bandpass filter, NA: numerical aperture, EM: energy meter.
Fig. 2
Fig. 2 Interferograms recorded at different moments of the laser-induced breakdown generated by a 314-ps laser pulse (FWHM) in the bulk of fused-silica glass with a fluence of 522 J/cm2; the images cover the development between a time delay of −204 ps and 12.796 ns; the white dashed-line is for alignment of plasma channel length.
Fig. 3
Fig. 3 Images of the probe amplitude distribution extracted from the interferograms; channel formation between the time delays of −204 ps and 12.796 ns is covered; the white vertical dashed line is for alignment of plasma channel length; the yellow vertical arrow shows the border between the plasma channel and the spark light.
Fig. 4
Fig. 4 Development of the channel length in time (measured as a function of the delay time). Experimental temporal profile of the driving laser pulse (with FWHM equal to 314 ps) is fitted by the Gaussian function (the black solid line) and is normalized to the pulse intensity. The probe pulses are sketched in the blue-color and propagate from left to right. a) the breakdown threshold; b) the plasma channel with a length of (≃28.4 μm) is almost completed close to the peak of the pump pulse; c) completion of the plasma channel (length of ≃30 μm); d) situation at the end of the laser driving pulse.
Fig. 5
Fig. 5 The processed interferometric data for a time delay of 196 ps.
Fig. 6
Fig. 6 Development in time of the axial electron density distribution in the plasma channel for: a) the time delays between −202 ps and 196 ps and b) the time delays between 196 ps and 4.196 ns.
Fig. 7
Fig. 7 The ionization front speed and the increase rate of the electron density maximum both vs. time delay.

Metrics