Abstract

Fiber Bragg grating inscription with infrared femtosecond pulsed lasers in photonic crystal fiber is far from being trivial due to the presence of air holes in the cladding region and the non-linear nature of the absorption process inducing the required refractive index changes. We have studied this problem numerically and experimentally for a phase mask-based writing setup equipped with short focal length cylindrical lenses, which are often used for through-coating and high temperature stable grating writing. We have shown that for a cylindrical lens with a focal length f of 10 mm, the hexagonal lattice PCF needs to be translated away from the beam waist position by around 15 µm to efficiently deliver the energy to the core region. We have also investigated the importance of the PCF’s angular orientation and we have shown that for some optimal positions the same behavior is observed for cylindrical lenses with different focal lengths. Finally, we have succeeded in writing a 4 dB strong grating in a photonic crystal fiber with a 1030 nm femtosecond pulsed laser in around 4 seconds, using an acylindrical lens with f = 10 mm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription

Tigran Baghdasaryan, Thomas Geernaert, Francis Berghmans, and Hugo Thienpont
Opt. Express 19(8) 7705-7716 (2011)

Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers

Tigran Baghdasaryan, Thomas Geernaert, Hugo Thienpont, and Francis Berghmans
Opt. Express 23(2) 709-723 (2015)

Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers

Kyriacos Kalli, Alexander Argyros, Helen Dobb, David J. Webb, Maryanne C.J. Large, and Martijn A. van Eijkelenborg
Opt. Lett. 30(24) 3296-3298 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  2. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  3. L. Thevenaz, Advanced Fiber Optics: Concepts and Technology (EPFL, 2011).
  4. F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
    [Crossref]
  5. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
    [Crossref]
  6. S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
    [Crossref] [PubMed]
  7. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [Crossref] [PubMed]
  8. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
    [Crossref]
  9. D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally Stable Type II FBGs Written Through Polyimide Coatings of Silica-Based Optical Fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
    [Crossref]
  10. A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
    [Crossref]
  11. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [Crossref] [PubMed]
  12. S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. 4, 09049 (2009).
    [Crossref]
  13. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
    [Crossref]
  14. T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
    [Crossref] [PubMed]
  15. A. V. Dostovalov, A. A. Wolf, V. K. Mezentsev, A. G. Okhrimchuk, and S. A. Babin, “Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica,” Opt. Express 23(25), 32541–32547 (2015).
    [Crossref] [PubMed]
  16. D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
    [Crossref]
  17. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18(17), 1837–1839 (2006).
    [Crossref]
  18. D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
    [Crossref]
  19. T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
    [Crossref] [PubMed]
  20. C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Opt. Express 25(23), 28442 (2017).
    [Crossref]
  21. S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
    [Crossref]
  22. T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers,” Opt. Express 23(2), 709–723 (2015).
    [Crossref] [PubMed]
  23. T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
    [Crossref]
  24. T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
    [Crossref] [PubMed]
  25. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
    [Crossref]
  26. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [Crossref] [PubMed]
  27. M. Bernier, S. Gagnon, and R. Vallée, “Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800nm [Invited],” Opt. Mater. Express 1(5), 832 (2011).
    [Crossref]
  28. R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
    [Crossref] [PubMed]
  29. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  30. Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .
  31. D. Grobnic, C. Hnatovsky, R. Lausten, and S. J. Mihailov, “Dynamics of the Fluorescence Intensity during Fiber Bragg Gratings Inscription in SMF28 and Pure Silica Core Fiber using 800 nm Fs Radiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2016), paper BTh3B–7.

2018 (2)

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

2017 (4)

C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Opt. Express 25(23), 28442 (2017).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally Stable Type II FBGs Written Through Polyimide Coatings of Silica-Based Optical Fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

2015 (2)

2014 (1)

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

2013 (1)

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

2012 (1)

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (2)

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. 4, 09049 (2009).
[Crossref]

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[Crossref] [PubMed]

2008 (3)

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[Crossref] [PubMed]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

2007 (3)

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[Crossref] [PubMed]

2006 (3)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

2004 (1)

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Asatryan, A. A.

Babin, S. A.

Baghdasaryan, T.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers,” Opt. Express 23(2), 709–723 (2015).
[Crossref] [PubMed]

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

Barton, J. S.

Becker, R. G.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Bennion, I.

Berghmans, F.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers,” Opt. Express 23(2), 709–723 (2015).
[Crossref] [PubMed]

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
[Crossref] [PubMed]

Bernier, M.

Bookey, H. T.

Botten, L. C.

Boukenter, A.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Broeng, J.

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

Cadier, B.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

Caucheteur, C.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

Chah, K.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

Chen, K.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Coulas, D.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Ding, H.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

Dostovalov, A. V.

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Gagnon, S.

Geernaert, T.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers,” Opt. Express 23(2), 709–723 (2015).
[Crossref] [PubMed]

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
[Crossref] [PubMed]

Genot, J. S.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Girard, S.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Grattan, K. T. V.

Grelin, J.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Grobnic, D.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally Stable Type II FBGs Written Through Polyimide Coatings of Silica-Based Optical Fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

He, J.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hnatovsky, C.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally Stable Type II FBGs Written Through Polyimide Coatings of Silica-Based Optical Fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

Hutter, L.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Jha, A.

Jiang, X.

Jin, W.

Kalli, K.

Kan, D. J.

Kar, A. K.

Khrushchev, I. Y.

Kobelke, J.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

Komodromos, M.

Koutsides, C.

Kuhnhenn, J.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Lablonde, L.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Li, H.

Li, M. J.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

Li, Y.

Liao, C.

Liao, C. R.

Livitziis, M.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. 4, 09049 (2009).
[Crossref]

Lousteau, J.

Lu, P.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Macé, J. R.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

MacPherson, W. N.

Marin, E.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Marshall, G. D.

Martinez, A.

Mélin, G.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mezentsev, V. K.

Mihailov, S. J.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally Stable Type II FBGs Written Through Polyimide Coatings of Silica-Based Optical Fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

Morana, A.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Nasilowski, T.

Nikogosyan, D. N.

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

Nolte, S.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Okhrimchuk, A. G.

Ouerdane, Y.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Périsse, J.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Pissadakis, S.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. 4, 09049 (2009).
[Crossref]

Ramos, R. T.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Richter, D.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Robin, T.

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Schuster, K.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

Sun, T.

Suo, R.

Thienpont, H.

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers,” Opt. Express 23(2), 709–723 (2015).
[Crossref] [PubMed]

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
[Crossref] [PubMed]

Thomas, J.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Tsibidis, G. D.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. 4, 09049 (2009).
[Crossref]

Tünnermann, A.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Urbanczyk, W.

Vallée, R.

Voigtländer, C.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Wang, C.

Wang, D. N.

Wang, J.

Wang, Y.

Wikszak, E.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Withford, M. J.

Wojcik, J.

Wolf, A. A.

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Zhang, J.

Zhang, L.

Zhou, K.

Appl. Phys., A Mater. Sci. Process. (1)

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[Crossref]

Electron. Lett. (1)

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

IEEE Photonics J. (1)

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (4)

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of bragg gratings in random air-line clad microstructured optical fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally Stable Type II FBGs Written Through Polyimide Coatings of Silica-Based Optical Fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

A. Morana, S. Girard, E. Marin, J. Périsse, J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J. R. Macé, A. Boukenter, and Y. Ouerdane, “Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments,” IEEE Trans. Nucl. Sci. 64(1), 68–73 (2017).
[Crossref]

J. Eur. Opt. Soc. (1)

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. 4, 09049 (2009).
[Crossref]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Laser Photonics Rev. (3)

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photonics Rev. 6(6), 709–723 (2012).
[Crossref]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

Meas. Sci. Technol. (1)

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

Opt. Express (7)

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

A. V. Dostovalov, A. A. Wolf, V. K. Mezentsev, A. G. Okhrimchuk, and S. A. Babin, “Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica,” Opt. Express 23(25), 32541–32547 (2015).
[Crossref] [PubMed]

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers,” Opt. Express 23(2), 709–723 (2015).
[Crossref] [PubMed]

C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Opt. Express 25(23), 28442 (2017).
[Crossref]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[Crossref] [PubMed]

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

Sci. Rep. (1)

T. Baghdasaryan, T. Geernaert, K. Chah, C. Caucheteur, K. Schuster, J. Kobelke, H. Thienpont, and F. Berghmans, “Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers,” Sci. Rep. 8(1), 5470 (2018).
[Crossref] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings,” Sensors (Basel) 17(12), 2909 (2017).
[Crossref] [PubMed]

Other (3)

L. Thevenaz, Advanced Fiber Optics: Concepts and Technology (EPFL, 2011).

Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .

D. Grobnic, C. Hnatovsky, R. Lausten, and S. J. Mihailov, “Dynamics of the Fluorescence Intensity during Fiber Bragg Gratings Inscription in SMF28 and Pure Silica Core Fiber using 800 nm Fs Radiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2016), paper BTh3B–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of the IR phase mask grating inscription seen from two perspectives: a) near field interference from the phase mask and b) focusing using a cylindrical lens.
Fig. 2
Fig. 2 Normalized intensity distributions in a standard step-index fiber. The grating writing beam is focused to the core region using cylindrical lenses with different focal lengths f.
Fig. 3
Fig. 3 Scanning electron microscope image of the PCF considered in the work.
Fig. 4
Fig. 4 TCE dependence on the PCF angular orientation for four different focal lengths. Only angles from 0 to 60° are shown for sake of symmetry of the hexagonal air hole lattice.
Fig. 5
Fig. 5 Translational dependence of the TCE along a) the X axis and b) the Y axis for incidence along the ΓK for four different focal lengths.
Fig. 6
Fig. 6 Intensity distribution in the PCF microstructure with a lens with focal length f = 10 mm when the fiber is translated along the Y axis by a) ΔY = 0 µm and b) ΔY = −15 µm.
Fig. 7
Fig. 7 TCE dependence on the PCF angular orientation for vertical translations of the focus ΔY = 0 µm and ΔY = −15 µm relative to the center of the core region.
Fig. 8
Fig. 8 Transmission and reflection spectrum of the femtosecond pulsed laser-based grating inscribed in the hexagonal lattice PCF using phase mask setup and cylindrical lens with f = 10 mm.

Tables (2)

Tables Icon

Table 1 Dimensions of the focal region for a 4 mm width Gaussian beam focused on a step-index fiber core region using cylindrical lenses with different focal lengths f.

Tables Icon

Table 2 Statistical data for the TCE dependence on the PCF angular orientation.

Metrics