Abstract

In order to realize surface elemental microanalysis of solid samples with submicron lateral resolution, laser-ablation (LA) combined with high sensitive laser-induced fluorescence (LIF) detection was investigated. A 532 nm or 266 nm nanosecond laser pulse with low pulse energy was used to realize submicron laser-ablation on the surface of a copper alloy, and LIF technique was used to sensitively detect a minor lead element in the ablated samples. ~344 nm and ~267 nm lateral resolutions could be achieved experimentally under 532 nm and 266 nm laser ablations under the current experimental condition, respectively. This demonstrated the feasibility of using a LA-LIF technique for surface elemental microanalysis of solid samples with submicron spatial resolution. The potentials of continually improving the spatial resolution of this technique to nanoscale were discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy

Qi Zhou, Yuqi Chen, Feifei Peng, Xuejiao Yang, and Runhua Li
Appl. Opt. 52(23) 5600-5605 (2013)

Spectrochemical microanalysis of aluminum alloys by laser-induced breakdown spectroscopy: identification of precipitates

Igor V. Cravetchi, Mike Taschuk, Georg W. Rieger, Ying Y. Tsui, and Robert Fedosejevs
Appl. Opt. 42(30) 6138-6147 (2003)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
    [Crossref]
  2. R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
    [Crossref]
  3. M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
    [Crossref]
  4. Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
    [Crossref] [PubMed]
  5. B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
    [Crossref] [PubMed]
  6. I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
    [Crossref]
  7. V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48(5), 357–383 (2013).
    [Crossref]
  8. P. L. King, “Artifacts in AES microanalysis for semiconductor applications,” Surf. Interface Anal. 30(1), 377–382 (2000).
    [Crossref]
  9. J. Guillot and H. Migeon, “Effective approaches for realizing quantitative analyses and high lateral resolution images on highly insulating samples by Auger electron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 187, 1–8 (2013).
    [Crossref]
  10. T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
    [Crossref] [PubMed]
  11. H. W. Werner, “SIMS: from research to production control,” Surf. Interface Anal. 35(11), 859–879 (2003).
    [Crossref]
  12. D. E. Newbury and N. W. Ritchie, “Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS),” J. Mater. Sci. 50(2), 493–518 (2015).
    [Crossref] [PubMed]
  13. J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
    [Crossref]
  14. T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
    [Crossref]
  15. X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
    [Crossref]
  16. B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
    [Crossref]
  17. F. C. Alvira, F. Ramirez Rozzi, and G. M. Bilmes, “Laser-induced breakdown spectroscopy microanalysis of trace elements in Homo sapiens teeth,” Appl. Spectrosc. 64(3), 313–319 (2010).
    [Crossref] [PubMed]
  18. M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
    [Crossref]
  19. V. Zorba, X. Mao, and R. E. Russo, “Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis,” Anal. Bioanal. Chem. 396(1), 173–180 (2010).
    [Crossref] [PubMed]
  20. S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
    [Crossref]
  21. V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B At. Spectrosc. 66(2), 189–192 (2011).
    [Crossref]
  22. D. Kossakovski and J. L. Beauchamp, “Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy,” Anal. Chem. 72(19), 4731–4737 (2000).
    [Crossref] [PubMed]
  23. J. Mo, Y. Chen, and R. Li, “Silver jewelry microanalysis with dual-pulse laser-induced breakdown spectroscopy: 266 + 1064 nm wavelength combination,” Appl. Opt. 53(31), 7516–7522 (2014).
    [Crossref] [PubMed]
  24. O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
    [Crossref]
  25. K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
    [Crossref]
  26. C. Li, Z. Hao, Z. Zou, R. Zhou, J. Li, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence,” Opt. Express 24(8), 7850–7857 (2016).
    [Crossref] [PubMed]
  27. J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
    [Crossref] [PubMed]
  28. R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
    [Crossref] [PubMed]
  29. S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
    [Crossref] [PubMed]
  30. H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
    [Crossref]
  31. R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
    [Crossref]
  32. S. K. Ho and N. H. Cheung, “Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: elucidation of the fluorescence mechanism,” Appl. Phys. Lett. 87(26), 264104 (2005).
    [Crossref]
  33. S. K. Ho and N. H. Cheung, “Sub-part-per-billion analysis of aqueous lead colloids by ArF laser induced atomic fluorescence,” Anal. Chem. 77(1), 193–199 (2005).
    [Crossref] [PubMed]
  34. X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
    [Crossref]
  35. J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
    [Crossref]
  36. Q. Zhou, Y. Chen, F. Peng, X. Yang, and R. Li, “Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy,” Appl. Opt. 52(23), 5600–5605 (2013).
    [Crossref] [PubMed]
  37. T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
    [Crossref]
  38. J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
    [Crossref]
  39. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  40. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
    [Crossref] [PubMed]

2017 (6)

R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
[Crossref]

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

2016 (5)

C. Li, Z. Hao, Z. Zou, R. Zhou, J. Li, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence,” Opt. Express 24(8), 7850–7857 (2016).
[Crossref] [PubMed]

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

2015 (2)

D. E. Newbury and N. W. Ritchie, “Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS),” J. Mater. Sci. 50(2), 493–518 (2015).
[Crossref] [PubMed]

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

2014 (1)

2013 (4)

Q. Zhou, Y. Chen, F. Peng, X. Yang, and R. Li, “Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy,” Appl. Opt. 52(23), 5600–5605 (2013).
[Crossref] [PubMed]

J. Guillot and H. Migeon, “Effective approaches for realizing quantitative analyses and high lateral resolution images on highly insulating samples by Auger electron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 187, 1–8 (2013).
[Crossref]

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48(5), 357–383 (2013).
[Crossref]

2012 (1)

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

2011 (2)

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B At. Spectrosc. 66(2), 189–192 (2011).
[Crossref]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

2010 (4)

F. C. Alvira, F. Ramirez Rozzi, and G. M. Bilmes, “Laser-induced breakdown spectroscopy microanalysis of trace elements in Homo sapiens teeth,” Appl. Spectrosc. 64(3), 313–319 (2010).
[Crossref] [PubMed]

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis,” Anal. Bioanal. Chem. 396(1), 173–180 (2010).
[Crossref] [PubMed]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

2009 (4)

I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
[Crossref]

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

2008 (2)

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
[Crossref] [PubMed]

2005 (3)

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

S. K. Ho and N. H. Cheung, “Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: elucidation of the fluorescence mechanism,” Appl. Phys. Lett. 87(26), 264104 (2005).
[Crossref]

S. K. Ho and N. H. Cheung, “Sub-part-per-billion analysis of aqueous lead colloids by ArF laser induced atomic fluorescence,” Anal. Chem. 77(1), 193–199 (2005).
[Crossref] [PubMed]

2003 (2)

H. W. Werner, “SIMS: from research to production control,” Surf. Interface Anal. 35(11), 859–879 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2001 (1)

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

2000 (2)

P. L. King, “Artifacts in AES microanalysis for semiconductor applications,” Surf. Interface Anal. 30(1), 377–382 (2000).
[Crossref]

D. Kossakovski and J. L. Beauchamp, “Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy,” Anal. Chem. 72(19), 4731–4737 (2000).
[Crossref] [PubMed]

1997 (1)

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Adam, V.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Alvira, F. C.

Balta, I. Z.

I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
[Crossref]

Banerjee, S. P.

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

Baudelet, M.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Baumgartl, J.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

Beauchamp, J. L.

D. Kossakovski and J. L. Beauchamp, “Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy,” Anal. Chem. 72(19), 4731–4737 (2000).
[Crossref] [PubMed]

Benoit, J. M.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Bersani, M.

I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
[Crossref]

Bilmes, G. M.

Bonta, M.

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

Bulska, E.

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

Busser, B.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Cabanzo, R.

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

Cai, Y.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

Calderón, X.

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

Casal, A.

R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
[Crossref]

Cavalli, P.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Cerrato, R.

R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
[Crossref]

Cervenka, R.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Chakera, M.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Chao, W.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Chen, Y.

Chen, Y. Q.

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

Chen, Z.

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

Cheung, N. H.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

S. K. Ho and N. H. Cheung, “Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: elucidation of the fluorescence mechanism,” Appl. Phys. Lett. 87(26), 264104 (2005).
[Crossref]

S. K. Ho and N. H. Cheung, “Sub-part-per-billion analysis of aqueous lead colloids by ArF laser induced atomic fluorescence,” Anal. Chem. 77(1), 193–199 (2005).
[Crossref] [PubMed]

Chu, P. C.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

Clark, C.

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

De Ligny, D.

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Dholakia, K.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Duffin, A. M.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Dugourd, P.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Dussossoy, J. L.

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Eiden, C.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Elsayed-Ali, H. E.

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

Fedosejevs, R.

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Fukuda, S.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Galiová, M.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Gimenez, Y.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Godwal, Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Gonzalez, J. J.

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

Green, T.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Guillot, J.

J. Guillot and H. Migeon, “Effective approaches for realizing quantitative analyses and high lateral resolution images on highly insulating samples by Auger electron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 187, 1–8 (2013).
[Crossref]

Guo, L.

Hahn, D. W.

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

Hand, M.

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

Hao, Z.

Heck, M.

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

Hegedus, B.

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

Ho, S. K.

S. K. Ho and N. H. Cheung, “Sub-part-per-billion analysis of aqueous lead colloids by ArF laser induced atomic fluorescence,” Anal. Chem. 77(1), 193–199 (2005).
[Crossref] [PubMed]

S. K. Ho and N. H. Cheung, “Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: elucidation of the fluorescence mechanism,” Appl. Phys. Lett. 87(26), 264104 (2005).
[Crossref]

Hrdlicka, A.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Huang, Z. Y.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

Hulanicki, A.

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

Iacob, E.

I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
[Crossref]

Inoue, Y.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Ishiguro, S.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Kaiser, J.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Kang, J.

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

Kanický, V.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

King, P. L.

P. L. King, “Artifacts in AES microanalysis for semiconductor applications,” Surf. Interface Anal. 30(1), 377–382 (2000).
[Crossref]

Kizek, R.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Kosmeier, S.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

Kossakovski, D.

D. Kossakovski and J. L. Beauchamp, “Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy,” Anal. Chem. 72(19), 4731–4737 (2000).
[Crossref] [PubMed]

Kulesza, A.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Kurisaki, T.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Kuznetsov, I.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Lanari, P.

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

Laurent, J. M.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Laville, S.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Leung, K. S. Y.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

Levy, U.

Li, C.

Li, J.

Li, K. X.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Li, R.

Li, R. H.

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

Li, X.

Limbeck, A.

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

Liška, M.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Liu, Y.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Loudyi, H.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Lu, Y.

Lui, S. L.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Lum, J. T. S.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

Lux, F.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Mao, X.

V. Zorba, X. Mao, and R. E. Russo, “Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis,” Anal. Bioanal. Chem. 396(1), 173–180 (2010).
[Crossref] [PubMed]

Mao, X. L.

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B At. Spectrosc. 66(2), 189–192 (2011).
[Crossref]

Mateo, M. P.

R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
[Crossref]

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48(5), 357–383 (2013).
[Crossref]

Mazilu, M.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

Menoni, C. S.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Migeon, H.

J. Guillot and H. Migeon, “Effective approaches for realizing quantitative analyses and high lateral resolution images on highly insulating samples by Auger electron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 187, 1–8 (2013).
[Crossref]

Minofar, B.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Mo, J.

Motto-Ros, V.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Naes, B. E.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Nassef, O. A.

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

Neuhauser, R. E.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Newbury, D. E.

D. E. Newbury and N. W. Ritchie, “Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS),” J. Mater. Sci. 50(2), 493–518 (2015).
[Crossref] [PubMed]

Nicolas, G.

R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
[Crossref]

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48(5), 357–383 (2013).
[Crossref]

Niessner, R.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Novotný, J.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Novotný, K.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Omenetto, N.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Ortner, H. M.

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

Ospino, E. M.

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

Panczer, G.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Panne, U.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Payne, J.

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

Pederzoli, S.

I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
[Crossref]

Pelascini, F.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Peng, B. J.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Peng, F.

Petrucci, G. A.

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Peuget, S.

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Piñon, V.

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48(5), 357–383 (2013).
[Crossref]

Pinto, M.

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

Poveda, J. C.

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Quarles, C. D.

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

Raimondo, T.

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

Ramirez Rozzi, F.

Reale, L.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Ren, Z. J.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Richardson, M.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Rifai, K.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Ritchie, N. W.

D. E. Newbury and N. W. Ritchie, “Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS),” J. Mater. Sci. 50(2), 493–518 (2015).
[Crossref] [PubMed]

Rocca, J. J.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Rogers, E. T. F.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

Russo, R. E.

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B At. Spectrosc. 66(2), 189–192 (2011).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis,” Anal. Bioanal. Chem. 396(1), 173–180 (2010).
[Crossref] [PubMed]

Sabsabi, M.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Samek, O.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Sancey, L.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Shen, Q. M.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Stejskal, K.

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

Tanaka, D.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Tang, S.

Taschuk, M. T.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Tillement, O.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Trichard, F.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Tsui, Y. Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Umebayashi, Y.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Vidal, F.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Wade, B.

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

Wagner, B.

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

Wakita, H.

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

Wang, X.

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Wang, X. C.

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

Wang, Y. R.

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

Werner, H. W.

H. W. Werner, “SIMS: from research to production control,” Surf. Interface Anal. 35(11), 859–879 (2003).
[Crossref]

Willingham, D.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Windom, B. C.

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

Yang, X.

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Q. Zhou, Y. Chen, F. Peng, X. Yang, and R. Li, “Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy,” Appl. Opt. 52(23), 5600–5605 (2013).
[Crossref] [PubMed]

Yang, Y. X.

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

Yi, R.

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

Yu, H.

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

Yu, J.

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

Zaun, V.

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Zeng, X.

Zhao, N.

Zheludev, N. I.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

Zhou, Q.

Zhou, R.

Zhou, W. D.

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

Zhu, Z.

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

Zorba, V.

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B At. Spectrosc. 66(2), 189–192 (2011).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis,” Anal. Bioanal. Chem. 396(1), 173–180 (2010).
[Crossref] [PubMed]

Zou, Z.

Anal. Bioanal. Chem. (1)

V. Zorba, X. Mao, and R. E. Russo, “Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis,” Anal. Bioanal. Chem. 396(1), 173–180 (2010).
[Crossref] [PubMed]

Anal. Chem. (4)

D. Kossakovski and J. L. Beauchamp, “Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy,” Anal. Chem. 72(19), 4731–4737 (2000).
[Crossref] [PubMed]

R. Yi, J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence,” Anal. Chem. 89(4), 2334–2337 (2017).
[Crossref] [PubMed]

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

S. K. Ho and N. H. Cheung, “Sub-part-per-billion analysis of aqueous lead colloids by ArF laser induced atomic fluorescence,” Anal. Chem. 77(1), 193–199 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

R. E. Neuhauser, U. Panne, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346(1), 37–48 (1997).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[Crossref]

S. K. Ho and N. H. Cheung, “Sensitive elemental analysis by ArF laser-induced fluorescence of laser ablation plumes: elucidation of the fluorescence mechanism,” Appl. Phys. Lett. 87(26), 264104 (2005).
[Crossref]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48(5), 357–383 (2013).
[Crossref]

Appl. Surf. Sci. (1)

I. Z. Balta, S. Pederzoli, E. Iacob, and M. Bersani, “Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas,” Appl. Surf. Sci. 255(12), 6378–6385 (2009).
[Crossref]

Contrib. Mineral. Petrol. (1)

T. Raimondo, J. Payne, B. Wade, P. Lanari, C. Clark, and M. Hand, “Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet,” Contrib. Mineral. Petrol. 172(4), 17 (2017).
[Crossref]

Fresenius J. Anal. Chem. (1)

B. Wagner, E. Bulska, A. Hulanicki, M. Heck, and H. M. Ortner, “Topochemical investigation of ancient manuscripts,” Fresenius J. Anal. Chem. 369(7-8), 674–679 (2001).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (8)

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

M. Bonta, J. J. Gonzalez, C. D. Quarles, R. E. Russo, B. Hegedus, and A. Limbeck, “Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 31(1), 252–258 (2016).
[Crossref]

X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lum, and N. H. Cheung, “The mechanism of ArF laser-induced fluorescence of dense plume matter,” J. Anal. At. Spectrom. 31(12), 2363–2374 (2016).
[Crossref]

J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, “Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber,” J. Anal. At. Spectrom. 32(11), 2292–2299 (2017).
[Crossref]

T. Green, I. Kuznetsov, D. Willingham, B. E. Naes, C. Eiden, Z. Zhu, W. Chao, J. J. Rocca, C. S. Menoni, and A. M. Duffin, “Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging,” J. Anal. At. Spectrom. 32(6), 1092–1100 (2017).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chakera, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, “Laser ablation assisted spark induced breakdown spectroscopy on soil samples,” J. Anal. At. Spectrom. 25(9), 1475–1481 (2010).
[Crossref]

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

J. Guillot and H. Migeon, “Effective approaches for realizing quantitative analyses and high lateral resolution images on highly insulating samples by Auger electron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 187, 1–8 (2013).
[Crossref]

J. Mater. Sci. (1)

D. E. Newbury and N. W. Ritchie, “Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS),” J. Mater. Sci. 50(2), 493–518 (2015).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

T. Kurisaki, D. Tanaka, Y. Inoue, H. Wakita, B. Minofar, S. Fukuda, S. Ishiguro, and Y. Umebayashi, “Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy,” J. Phys. Chem. B 116(35), 10870–10875 (2012).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

M. Pinto, X. Calderón, E. M. Ospino, R. Cabanzo, and J. C. Poveda, “Surface characterization of stainless HP-40 steel using laser induced μ-breakdown spectroscopy (μ -LIBS),” J. Phys. Conf. Ser. 687, 012111 (2016).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent, V. Zaun, F. Lux, J. M. Benoit, G. Panczer, P. Dugourd, O. Tillement, F. Pelascini, L. Sancey, and V. Motto-Ros, “3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy,” Sci. Rep. 6(1), 29936 (2016).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (5)

R. Cerrato, A. Casal, M. P. Mateo, and G. Nicolas, “Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements,” Spectrochim. Acta B At. Spectrosc. 130, 1–6 (2017).
[Crossref]

X. Wang, V. Motto-Ros, G. Panczer, D. De Ligny, J. Yu, J. M. Benoit, J. L. Dussossoy, and S. Peuget, “Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 139–146 (2013).
[Crossref]

J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B At. Spectrosc. 64(1), 67–73 (2009).
[Crossref]

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B At. Spectrosc. 66(2), 189–192 (2011).
[Crossref]

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 60(12), 1564–1572 (2005).
[Crossref]

Surf. Interface Anal. (2)

H. W. Werner, “SIMS: from research to production control,” Surf. Interface Anal. 35(11), 859–879 (2003).
[Crossref]

P. L. King, “Artifacts in AES microanalysis for semiconductor applications,” Surf. Interface Anal. 30(1), 377–382 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup of LA-LIF technique.
Fig. 2
Fig. 2 (a) Simplified atomic energy level diagram of lead; (b) Temporal profiles of plasma emission recorded at 405.78 nm and 404.0 nm. Up, in laser ablation; Down, in LA-LIF. The wavelength of ablation laser used here is 532 nm. The inset shows the zoomed LIF signal recorded at 405.78 nm and the background recorded at 404.0 nm.
Fig. 3
Fig. 3 (a) Plot of the relative intensity of LIF signal of lead atom at 405.78 nm versus pulse energy of the 532 nm ablation laser in LA-LIF. The experimental data points obtained under low laser pulse energies can be linearly fitted; (b) Plot of the radius of the craters versus the pulse energy of 532 nm ablation laser. The experimental data points can be nonlinearly fitted with Eq. (3). The linear fitting line under low ablation pulse energy is shown in the inset.
Fig. 4
Fig. 4 (a) SEM photos of the craters formed by 532 nm ablation laser pulses with different pulse energies. One column was corresponded with one pulse energy. (b) The crater formed by single shot of the ablation laser with 0.5 μJ pulse energy.
Fig. 5
Fig. 5 The depth profile of the craters formed by 532 nm laser with different pulse energies in XOY plane. (a) 34.8 μJ; (b) 22.0 μJ; (c) 7.1μJ; (d) 1.3 μJ.
Fig. 6
Fig. 6 (a) Plot of LIF signal intensity of lead atom at 405.78 nm versus pulse energy of 266 nm ablation laser in LA-LIF. The experimental data points obtained under the low pulse energies of the ablation laser are selected to give a linear fitting; (b) Plot of the radius of the craters versus the pulse energy of 266 nm ablation laser. The linear fitting result using five data points with low pulse energies is shown in the inset.
Fig. 7
Fig. 7 SEM photo of the crater formed by single shot of the 266 nm ablation laser with 0.6 μJ pulse energy.

Tables (1)

Tables Icon

Table 1 List of the maximum diameter, the crater size, and depth of craters formed by 532 nm laser pulses with different pulse energies.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E= E 0 cos 2 θ
E= F t π 2 w 2 e 2 r t / w 2
r t = 2 2 w ln( 2E π F t w 2 ).

Metrics