Abstract

We study self-focusing and group-velocity dispersion (GVD) effects in the inhomogeneous atmosphere on pulsed-laser space debris removal facilitated by a ground-based laser. It is found that changes of the pulse duration and the beam spot size with the propagation distance are noticeable due to the interplay of the GVD effect and the self-focusing effect, which is quite different from the behavior in the linear case. It is shown that the temporal pulse splitting may appear on the space debris, and the spatial side lobe usually appears together with the temporal pulse splitting. As compared with the linear case, the beam width and the pulse width on the debris target increase. On the other hand, crucial formulae of the modified focal length and the M2-factor for laser debris removal are also derived. It is found that the beam quality on the debris target becomes better if our modified focal length is adopted, and the beam quality on the debris target will be good if the value of M2-factor is less than 1.6.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Energy coupling in short pulse laser solid interactions and its impact for space debris removal

David Neely, Ric Allott, Bob Bingham, John Collier, Justin Greenhalgh, Max Michaelis, Jonathan Phillips, Claude R. Phipps, and Paul McKenna
Appl. Opt. 53(31) I41-I44 (2014)

Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE

Bruno Esmiller, Christophe Jacquelard, Hans-Albert Eckel, and Edwin Wnuk
Appl. Opt. 53(31) I45-I54 (2014)

High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM

Zhijun Kang, Zhongwei Fan, Yutao Huang, Hongbo Zhang, Wenqi Ge, Mingshan Li, Xiaochao Yan, and Guoxin Zhang
Opt. Express 26(6) 6560-6571 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
    [Crossref]
  2. C. R. Phipps, “An Alternate Treatment of the Vapor-Plasma Transition,” Int. J. Aerosp. Innov. 3(1), 45–50 (2011).
    [Crossref]
  3. W. O. Schall, “Laser radiation for cleaning space debris from lower earth orbits,” J. Spacecr. Rockets 39(1), 81–91 (2002).
    [Crossref]
  4. J. W. Campbell, “Project Orion: orbital debris removal using ground-based sensors and lasers,” NASA technical memorandum 108522 (1996).
  5. C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
    [Crossref]
  6. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [Crossref] [PubMed]
  7. E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
    [Crossref]
  8. A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “The effect of self-focusing on laser space-debris cleaning,” Light Sci. Appl. 3(4), e159 (2014).
    [Crossref]
  9. A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “Laser Beam Self-Focusing in the Atmosphere,” Phys. Rev. Lett. 102(23), 233902 (2009).
    [Crossref] [PubMed]
  10. H. Deng, X. Ji, X. Li, and X. Wang, “Effect of spherical aberration on laser beam self-focusing in the atmosphere,” Opt. Lett. 40(16), 3881–3884 (2015).
    [Crossref] [PubMed]
  11. C. R. Phipps, “Ultrashort Pulses for Impulse Generation in Laser Propulsion Applications,” AIP Conf. Proc. 406, 477 (1997).
  12. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  13. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett. 17(8), 583–585 (1992).
    [Crossref] [PubMed]
  14. A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
    [Crossref]
  15. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependent study,” Phys. Rev. E. 58(4), 4903–4910 (1998).
    [Crossref]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chaps. 2 and 6.
  17. T. R. Taha and M. J. Ablowitz, “Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrodinger Equation,” J. Comput. Phys. 55(2), 203–230 (1984).
    [Crossref]
  18. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
    [Crossref]
  19. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19(10), 1653–1660 (1980).
    [Crossref] [PubMed]
  20. R. I. Miller and T. G. Roberts, “Laser self-focusing in the atmosphere,” Appl. Opt. 26(21), 4570–4575 (1987).
    [Crossref] [PubMed]
  21. S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
    [Crossref]
  22. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett. 17(8), 583–585 (1992).
    [Crossref] [PubMed]
  23. A. T. Ryan and G. P. Agrawal, “Pulse compression and spatial phase modulation in normally dispersive nonlinear Kerr media,” Opt. Lett. 20(3), 306–308 (1995).
    [Crossref] [PubMed]
  24. C. Pare and P. A. Belanger, “Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: the method of moments,” Opt. Quantum Electron. 24(9), S1051–S1070 (1992).
    [Crossref]

2016 (1)

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

2015 (1)

2014 (1)

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “The effect of self-focusing on laser space-debris cleaning,” Light Sci. Appl. 3(4), e159 (2014).
[Crossref]

2013 (1)

A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
[Crossref]

2012 (1)

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

2011 (1)

C. R. Phipps, “An Alternate Treatment of the Vapor-Plasma Transition,” Int. J. Aerosp. Innov. 3(1), 45–50 (2011).
[Crossref]

2009 (1)

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “Laser Beam Self-Focusing in the Atmosphere,” Phys. Rev. Lett. 102(23), 233902 (2009).
[Crossref] [PubMed]

2007 (2)

2002 (1)

W. O. Schall, “Laser radiation for cleaning space debris from lower earth orbits,” J. Spacecr. Rockets 39(1), 81–91 (2002).
[Crossref]

1998 (2)

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependent study,” Phys. Rev. E. 58(4), 4903–4910 (1998).
[Crossref]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
[Crossref]

1997 (1)

C. R. Phipps, “Ultrashort Pulses for Impulse Generation in Laser Propulsion Applications,” AIP Conf. Proc. 406, 477 (1997).

1996 (1)

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

1995 (1)

1992 (3)

1990 (1)

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
[Crossref]

1987 (1)

1984 (1)

T. R. Taha and M. J. Ablowitz, “Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrodinger Equation,” J. Comput. Phys. 55(2), 203–230 (1984).
[Crossref]

1980 (1)

Ablowitz, M. J.

T. R. Taha and M. J. Ablowitz, “Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrodinger Equation,” J. Comput. Phys. 55(2), 203–230 (1984).
[Crossref]

Agrawal, G. P.

Albrecht, G.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Atherton, J.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Auerbach, J. M.

Baker, K. L.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Belanger, P. A.

C. Pare and P. A. Belanger, “Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: the method of moments,” Opt. Quantum Electron. 24(9), S1051–S1070 (1992).
[Crossref]

Bowers, M. W.

Clement, T. S.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Deng, H.

Diddams, S. A.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
[Crossref]

Dixit, S. N.

Eaton, H. K.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
[Crossref]

Erbert, G. V.

Fedoruk, M. P.

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “The effect of self-focusing on laser space-debris cleaning,” Light Sci. Appl. 3(4), e159 (2014).
[Crossref]

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “Laser Beam Self-Focusing in the Atmosphere,” Phys. Rev. Lett. 102(23), 233902 (2009).
[Crossref] [PubMed]

Friedman, H.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Gavel, D.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

George, E. V.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Ho, C.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Jancaitis, K. S.

Ji, X.

Kauffman, R.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Keane, C.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Lagin, L.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Larson, D.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Li, X.

Libby, S. B.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Liedahl, D. A.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

MacGowan, B.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Manes, K. R.

Marcovici, B.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Marcuse, D.

Marshall, C. D.

Mehta, N. C.

Menapace, J.

Michaelis, M. M.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Miller, R. I.

Mlejnek, M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependent study,” Phys. Rev. E. 58(4), 4903–4910 (1998).
[Crossref]

Moloney, J. V.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependent study,” Phys. Rev. E. 58(4), 4903–4910 (1998).
[Crossref]

Moses, E.

Moses, E. I.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Murray, J.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Murray, J. R.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Nistazakis, H. E.

A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
[Crossref]

Nostrand, M. C.

Olivier, S. S.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Orth, C. D.

Pare, C.

C. Pare and P. A. Belanger, “Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: the method of moments,” Opt. Quantum Electron. 24(9), S1051–S1070 (1992).
[Crossref]

Patterson, R.

Peppas, K. P.

A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
[Crossref]

Phipps, C. R.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

C. R. Phipps, “An Alternate Treatment of the Vapor-Plasma Transition,” Int. J. Aerosp. Innov. 3(1), 45–50 (2011).
[Crossref]

C. R. Phipps, “Ultrashort Pulses for Impulse Generation in Laser Propulsion Applications,” AIP Conf. Proc. 406, 477 (1997).

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Pleasance, L. D.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Priedhorsky, W.

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Reilly, J. P.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Roberts, T. G.

Rothenberg, J. E.

Rubenchik, A.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Rubenchik, A. M.

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “The effect of self-focusing on laser space-debris cleaning,” Light Sci. Appl. 3(4), e159 (2014).
[Crossref]

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “Laser Beam Self-Focusing in the Atmosphere,” Phys. Rev. Lett. 102(23), 233902 (2009).
[Crossref] [PubMed]

Ryan, A. T.

Sacks, R. A.

Schall, W. O.

W. O. Schall, “Laser radiation for cleaning space debris from lower earth orbits,” J. Spacecr. Rockets 39(1), 81–91 (2002).
[Crossref]

Shaw, M. J.

Siegman, A. E.

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
[Crossref]

Spaeth, M.

Stassinakis, A. N.

A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
[Crossref]

Sutton, S. B.

Taha, T. R.

T. R. Taha and M. J. Ablowitz, “Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrodinger Equation,” J. Comput. Phys. 55(2), 203–230 (1984).
[Crossref]

Tombras, G. S.

A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
[Crossref]

Trebes, J. E.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Turitsyn, S. K.

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “The effect of self-focusing on laser space-debris cleaning,” Light Sci. Appl. 3(4), e159 (2014).
[Crossref]

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “Laser Beam Self-Focusing in the Atmosphere,” Phys. Rev. Lett. 102(23), 233902 (2009).
[Crossref] [PubMed]

Valley, M. T.

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

Van Wonterghem, B. M.

Wang, X.

Wegner, P.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Wegner, P. J.

White, R. K.

Widmayer, C. C.

Williams, W. H.

Wonterghem, B. V.

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

Wright, E. M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependent study,” Phys. Rev. E. 58(4), 4903–4910 (1998).
[Crossref]

Yang, S. T.

Zozulya, A. A.

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
[Crossref]

Adv. Space Res. (1)

C. R. Phipps, K. L. Baker, S. B. Libby, D. A. Liedahl, S. S. Olivier, L. D. Pleasance, A. Rubenchik, J. E. Trebes, E. V. George, B. Marcovici, J. P. Reilly, and M. T. Valley, “Removing orbital debris with lasers,” Adv. Space Res. 49(9), 1283–1300 (2012).
[Crossref]

AIP Conf. Proc. (1)

C. R. Phipps, “Ultrashort Pulses for Impulse Generation in Laser Propulsion Applications,” AIP Conf. Proc. 406, 477 (1997).

Appl. Opt. (3)

IEEE J. Sel. Top. Quant. (1)

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Characterizing the Nonlinear Propagation of Femtosecond Pulses in Bulk Media,” IEEE J. Sel. Top. Quant. 4(2), 306–316 (1998).
[Crossref]

Int. J. Aerosp. Innov. (1)

C. R. Phipps, “An Alternate Treatment of the Vapor-Plasma Transition,” Int. J. Aerosp. Innov. 3(1), 45–50 (2011).
[Crossref]

J. Comput. Phys. (1)

T. R. Taha and M. J. Ablowitz, “Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrodinger Equation,” J. Comput. Phys. 55(2), 203–230 (1984).
[Crossref]

J. Phys. Conf. Ser. (1)

E. I. Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. V. Wonterghem, P. Wegner, and R. Kauffman, “The National Ignition Facility: Transition to a User Facility,” J. Phys. Conf. Ser. 688(1), 012073 (2016).
[Crossref]

J. Spacecr. Rockets (1)

W. O. Schall, “Laser radiation for cleaning space debris from lower earth orbits,” J. Spacecr. Rockets 39(1), 81–91 (2002).
[Crossref]

Laser Part. Beams (1)

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. George, J. Murray, C. Ho, W. Priedhorsky, M. M. Michaelis, and J. P. Reilly, “ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser,” Laser Part. Beams 14(1), 1–44 (1996).
[Crossref]

Light Sci. Appl. (1)

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “The effect of self-focusing on laser space-debris cleaning,” Light Sci. Appl. 3(4), e159 (2014).
[Crossref]

Opt. Laser Technol. (1)

A. N. Stassinakis, H. E. Nistazakis, K. P. Peppas, and G. S. Tombras, “Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses,” Opt. Laser Technol. 54, 329–334 (2013).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

C. Pare and P. A. Belanger, “Beam propagation in a linear or nonlinear lens-like medium using ABCD ray matrices: the method of moments,” Opt. Quantum Electron. 24(9), S1051–S1070 (1992).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. E. (1)

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependent study,” Phys. Rev. E. 58(4), 4903–4910 (1998).
[Crossref]

Phys. Rev. Lett. (1)

A. M. Rubenchik, M. P. Fedoruk, and S. K. Turitsyn, “Laser Beam Self-Focusing in the Atmosphere,” Phys. Rev. Lett. 102(23), 233902 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2 (1990).
[Crossref]

Other (2)

J. W. Campbell, “Project Orion: orbital debris removal using ground-based sensors and lasers,” NASA technical memorandum 108522 (1996).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chaps. 2 and 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Normalized intensity distributions I/I0 on the debris target.
Fig. 2
Fig. 2 (a)-(c) spatial distributions and (d)-(f) temporal intensity distributions versus the propagation distance z, T0 = 2 ps.
Fig. 3
Fig. 3 Relative pulse width T/T0 versus the propagation distance z.
Fig. 4
Fig. 4 Relative pulse width T/T0 versus the propagation distance z.
Fig. 5
Fig. 5 Beam width w versus the propagation distance z.
Fig. 6
Fig. 6 Comparison of fitting results and numerical simulation results.
Fig. 7
Fig. 7 Modified focal length Fmodversus the relative power P/Pcr.
Fig. 8
Fig. 8 Comparison of intensity distributions on the debris target, w0 = 1.41 m, P = 2000 Pcr,T0 = 4ns.
Fig. 9
Fig. 9 Intensity distribution on the debris target for different values of M2, w0 and P, T0 = 4 ns.
Fig. 10
Fig. 10 Curve of M 2 = 1.6 for different values of w0 and P/Pcr.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A z = i 2k 2 Ai β'' 2 2 A t 2 +ik n 2 n 0 | A | 2 A,
β''= 3.5 n 0 (ω)P(z) 2π c 2 λθ(z) 10 15 ,
A(r,t,z=0)= 2P π w 0 2 exp[ r 2 w 0 2 ( 1+ ik w 0 2 2F ) t 2 T 0 2 ],
w 2 = 2 r 2 | A(r,z) | 2 d 2 r / | A(r,z) | 2 d 2 r ,
T 2 = σ 2 σ 2 ,
w 1 2 =(1P/ P cr ) h 2 λ 2 / π 2 w 0 2 + (1h/F ) 2 w 0 2 ,
w 1 2 / R 1 =(1P/ P cr ) h λ 2 / π 2 w 0 2 (1h/F ) w 0 2 /F .
w 2 2 = w 1 2 + 2 w 1 2 R 1 (zh)+( λ 2 π 2 w 1 2 + w 1 2 R 1 2 ) (zh) 2 .
w mod 2 = w 1 2 + 2 w 1 2 R 1 (zh)+( A λ 2 π 2 w 1 2 + w 1 2 R 1 2 ) (zh) 2 ,
F'= 1h/F (1h/F)/F + (P/ P cr 1)h λ 2 / ( π 2 w 0 4 ) .
F mod = (L+h)+ (Lh) 2 + 4( P/ P cr 1 ) h 2 L 2 λ 2 / ( π 2 w 0 4 ) 2[ 1 ( P/ P cr 1 )hL λ 2 / ( π 2 w 0 4 ) ] .
θ= lim z ( w mod z )= A λ 2 π 2 w 1 2 + w 1 2 R 1 2 ,
w min = A λ 2 / π 2 A λ 2 / ( π 2 w 1 2 )+ w 1 2 / R 1 2 .
M 2 = π λ θ w min = A .

Metrics