Abstract

A novel all-polymer fiber-optic pH sensor using a UV-cured pH-sensitive hydrogel, poly(ethylene glycol) diacrylate (PEGDA), coated on a polymer fiber Bragg grating was developed. The PEGDA increased in volume according to the pH value of the surrounding fluid, which subsequently induced a lateral stress in the polymer fiber Bragg grating. The proposed pH sensor exhibits a pH sensitivity of up to −0.41 nm/pH and a fast response time of 30 s.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer

Bobo Gu, Ming-Jie Yin, A. Ping Zhang, Jin-Wen Qian, and Sailing He
Opt. Express 17(25) 22296-22302 (2009)

Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating

Pengbing Hu, Xinyong Dong, Wei Chang Wong, Li Han Chen, Kai Ni, and Chi Chiu Chan
Appl. Opt. 54(10) 2647-2652 (2015)

Ratiometric optical sensor for high-resolution imaging of pH with low cross-talk

Zike Jiang, Jiantao Chen, Jiewei Du, Tiesheng Liu, Xiaofeng Li, Huibin Yu, Qi Zhang, Yimeng Hu, Fengchen Liu, Xinsheng Yu, and Zhonghai Zhou
Appl. Opt. 57(34) 9922-9928 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
    [Crossref]
  2. S. R. Ankireddy and J. Kim, “Fabrication of Optical Fiber pH Sensor Based on Near-Infrared (NIR) Quantum Dots,” Sci. Adv. Mater. 6(11), 2562–2565 (2014).
    [Crossref]
  3. B. R. Mahdi, H. D. Al-Attabi, and S. D. Salman, “Manufacture of fiber optic sensors to measure the pH water,” Curr. Trends Nat. Sci. 5(9), 55–61 (2016).
  4. F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
    [Crossref] [PubMed]
  5. A. L. Chaudhari and A. D. Shaligram, “Development of fiber optic pH meter based on colorimetric principle,” Indian J. Pure Appl. Phy. 40(2), 132–136 (2002).
  6. L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).
  7. S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
    [Crossref] [PubMed]
  8. R. B. Thompson and J. R. Lakowicz, “Fiber Optic pH Sensor Based on Phase Fluorescence Lifetimes,” Anal. Chem. 65(7), 853–856 (1993).
    [Crossref]
  9. P. Zubiate, C. R. Zamarreno, I. Del Villar, I. R. Matias, and F. J. Arregui, “D-shape optical fiber pH sensor based on Lossy Mode Resonances (LMRs),” in Proceedings of IEEE SENSORS (IEEE, 2015), pp. 1–4.
  10. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009).
    [Crossref] [PubMed]
  11. J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett. 32(1), 29–31 (2007).
    [Crossref] [PubMed]
  12. Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
    [Crossref]
  13. A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
    [Crossref]
  14. Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
    [Crossref]
  15. M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
    [Crossref] [PubMed]
  16. Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
    [Crossref] [PubMed]
  17. C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref] [PubMed]
  18. A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
    [Crossref] [PubMed]
  19. X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
    [Crossref] [PubMed]
  20. A. G. Leal-Junior, A. Frizera, C. Marques, M. R. A. Sanchez, W. M. dos Santos, A. A. G. Siqueira, M. V. Segatto, and M. J. Pontes, “Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring,” J. Lightwave Technol. 36(9), 1698–1705 (2018).
    [Crossref]
  21. R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
    [Crossref] [PubMed]
  22. C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
    [Crossref]
  23. H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
    [Crossref] [PubMed]
  24. A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
    [Crossref]
  25. J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
    [Crossref]
  26. A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
    [Crossref] [PubMed]
  27. T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
    [Crossref] [PubMed]
  28. X. Hu, C. F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
    [Crossref] [PubMed]
  29. X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
    [Crossref]
  30. M. Rui, C. Marques, O. Bang, and B. Ortega, “Moiré phase-shifted fiber Bragg gratings in polymer optical fibers,” Opt. Fiber Technol. 41, 78–81 (2018).
  31. C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
    [Crossref]
  32. B. C. Avram, H. Bongtae, and K. J. Kim, “Thermo-Optic Effects in Polymer Bragg Gratings,” in Bragg gratings, M. Wu and R. S. Rogowski, (Springer, 2003).

2018 (4)

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

A. G. Leal-Junior, A. Frizera, C. Marques, M. R. A. Sanchez, W. M. dos Santos, A. A. G. Siqueira, M. V. Segatto, and M. J. Pontes, “Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring,” J. Lightwave Technol. 36(9), 1698–1705 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

M. Rui, C. Marques, O. Bang, and B. Ortega, “Moiré phase-shifted fiber Bragg gratings in polymer optical fibers,” Opt. Fiber Technol. 41, 78–81 (2018).

2017 (5)

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

2016 (2)

B. R. Mahdi, H. D. Al-Attabi, and S. D. Salman, “Manufacture of fiber optic sensors to measure the pH water,” Curr. Trends Nat. Sci. 5(9), 55–61 (2016).

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

2015 (4)

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[Crossref] [PubMed]

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

2014 (3)

X. Hu, C. F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
[Crossref] [PubMed]

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

S. R. Ankireddy and J. Kim, “Fabrication of Optical Fiber pH Sensor Based on Near-Infrared (NIR) Quantum Dots,” Sci. Adv. Mater. 6(11), 2562–2565 (2014).
[Crossref]

2013 (1)

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

2012 (3)

L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).

X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
[Crossref]

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

2011 (1)

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

2009 (1)

2007 (3)

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett. 32(1), 29–31 (2007).
[Crossref] [PubMed]

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
[Crossref] [PubMed]

2002 (1)

A. L. Chaudhari and A. D. Shaligram, “Development of fiber optic pH meter based on colorimetric principle,” Indian J. Pure Appl. Phy. 40(2), 132–136 (2002).

1993 (1)

R. B. Thompson and J. R. Lakowicz, “Fiber Optic pH Sensor Based on Phase Fluorescence Lifetimes,” Anal. Chem. 65(7), 853–856 (1993).
[Crossref]

Al-Attabi, H. D.

B. R. Mahdi, H. D. Al-Attabi, and S. D. Salman, “Manufacture of fiber optic sensors to measure the pH water,” Curr. Trends Nat. Sci. 5(9), 55–61 (2016).

An, Q.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

André, P.

Ankireddy, S. R.

S. R. Ankireddy and J. Kim, “Fabrication of Optical Fiber pH Sensor Based on Near-Infrared (NIR) Quantum Dots,” Sci. Adv. Mater. 6(11), 2562–2565 (2014).
[Crossref]

Antonietti, M.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

Arregui, F. J.

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett. 32(1), 29–31 (2007).
[Crossref] [PubMed]

Bae, S.

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

Bang, O.

M. Rui, C. Marques, O. Bang, and B. Ortega, “Moiré phase-shifted fiber Bragg gratings in polymer optical fibers,” Opt. Fiber Technol. 41, 78–81 (2018).

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

Bartil, T.

T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
[Crossref] [PubMed]

Boles, S. T.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Bonefacino, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Bounekhel, M.

T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
[Crossref] [PubMed]

Bradley, M.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Bravo, J.

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

Caucheteur, C.

Cavallo, A.

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

Cedric, C.

T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
[Crossref] [PubMed]

Chan, C.

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Chand, P.

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

Chaudhari, A. L.

A. L. Chaudhari and A. D. Shaligram, “Development of fiber optic pH meter based on colorimetric principle,” Indian J. Pure Appl. Phy. 40(2), 132–136 (2002).

Cheng, X.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Choudhary, T. R.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Choudhury, D.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Corres, J. M.

Czaplyski, W. L.

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

de Sena, G. L.

Debliquy, M.

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

del Villar, I.

Dong, X.

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

dos Santos, W. M.

Fabbri, P.

L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).

Ferrari, L.

L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).

Ferrario, D.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Frizera, A.

Gautam, R.

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

Glen, T. S.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Goicoechea, J.

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

González-Vila, Á.

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

Gu, B.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009).
[Crossref] [PubMed]

Gui, Z.

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

Harbron, E. J.

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

Harrington, K.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

He, S.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009).
[Crossref] [PubMed]

Hu, X.

Ischer, R.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Jeerome, R.

T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
[Crossref] [PubMed]

Kim, J.

S. R. Ankireddy and J. Kim, “Fabrication of Optical Fiber pH Sensor Based on Near-Infrared (NIR) Quantum Dots,” Sci. Adv. Mater. 6(11), 2562–2565 (2014).
[Crossref]

Kumar, R.

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

Lahem, D.

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

Lakowicz, J. R.

R. B. Thompson and J. R. Lakowicz, “Fiber Optic pH Sensor Based on Phase Fluorescence Lifetimes,” Anal. Chem. 65(7), 853–856 (1993).
[Crossref]

Leal-Junior, A. G.

Lee, H. J.

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

Lee, J. S.

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

Lee, P.-H.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Leite, S.

Li, X. F.

X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
[Crossref]

Lin, S.

X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
[Crossref]

Lionetto, M. G.

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

Lopez Aldaba, A.

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

Lopez-Amo, M.

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

Machado, L. C.

Madaghiele, M.

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

Mahdi, B. R.

B. R. Mahdi, H. D. Al-Attabi, and S. D. Salman, “Manufacture of fiber optic sensors to measure the pH water,” Curr. Trends Nat. Sci. 5(9), 55–61 (2016).

Marques, C.

Marques, C. A. F.

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. A. F. Marques, G. D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

Masullo, U.

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

Matias, I. R.

J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett. 32(1), 29–31 (2007).
[Crossref] [PubMed]

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

Mégret, P.

Mohamad, F.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Ni, K.

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Nielsen, K.

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

Ortega, B.

M. Rui, C. Marques, O. Bang, and B. Ortega, “Moiré phase-shifted fiber Bragg gratings in polymer optical fibers,” Opt. Fiber Technol. 41, 78–81 (2018).

Pasche, S.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Peng, G. D.

Pilati, F.

L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).

Pontes, M. J.

Porchet, J. A.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Pospori, A.

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

Prado, A. R.

Prescher, S.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

Pun, C. F. J.

Pun, C.-F. J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Purnell, G. E.

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

Qian, J.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

Qian, J. W.

Rasooly, M.

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

Ribeiro, M. R. N.

Rovati, L.

L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).

Rui, M.

M. Rui, C. Marques, O. Bang, and B. Ortega, “Moiré phase-shifted fiber Bragg gratings in polymer optical fibers,” Opt. Fiber Technol. 41, 78–81 (2018).

Saez-Rodriguez, D.

Sáez-Rodríguez, D.

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

Salman, S. D.

B. R. Mahdi, H. D. Al-Attabi, and S. D. Salman, “Manufacture of fiber optic sensors to measure the pH water,” Curr. Trends Nat. Sci. 5(9), 55–61 (2016).

Sanchez, M. R. A.

Sannino, A.

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

Schyrr, B.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Scolan, E.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Segatto, M. V.

Sen, A.

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

Shaligram, A. D.

A. L. Chaudhari and A. D. Shaligram, “Development of fiber optic pH meter based on colorimetric principle,” Indian J. Pure Appl. Phy. 40(2), 132–136 (2002).

Sharma, V. P.

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

Shum, P. P.

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Siddhartha, R.

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

Singh, R. D.

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

Siqueira, A. A. G.

Stratton, S. G.

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

Tam, H. Y.

Tam, H.-Y.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Tanner, M. G.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Taumoefolau, G. H.

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

Thompson, R. B.

R. B. Thompson and J. R. Lakowicz, “Fiber Optic pH Sensor Based on Phase Fluorescence Lifetimes,” Anal. Chem. 65(7), 853–856 (1993).
[Crossref]

Tse, M.-L. V.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Ueda, H. O. T.

X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
[Crossref]

Voirin, G.

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

Wang, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Webb, D. J.

Webb, K.

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

Wood, H. A. C.

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Yin, M.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

Yin, M. J.

Yuan, J.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

Zamarreño, C. R.

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

Zhang, A.

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

Zhang, A. P.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009).
[Crossref] [PubMed]

Zhang, J. L. Y.

X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
[Crossref]

Zhao, Q.

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

24th International Conference on Optical Fibre Sensors. Proc. SPIE (1)

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis,” 24th International Conference on Optical Fibre Sensors. Proc. SPIE 9634, 96345V (2015).
[Crossref]

Acta Biomater. (1)

H. J. Lee, A. Sen, S. Bae, J. S. Lee, and K. Webb, “Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration,” Acta Biomater. 14, 43–52 (2015).
[Crossref] [PubMed]

Acta Pharm. (1)

T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, “Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives,” Acta Pharm. 57(3), 301–314 (2007).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating,” Anal. Bioanal. Chem. 399(10), 3623–3631 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

R. B. Thompson and J. R. Lakowicz, “Fiber Optic pH Sensor Based on Phase Fluorescence Lifetimes,” Anal. Chem. 65(7), 853–856 (1993).
[Crossref]

Analyst (Lond.) (1)

F. Mohamad, M. G. Tanner, D. Choudhury, T. R. Choudhary, H. A. C. Wood, K. Harrington, and M. Bradley, “Controlled core-to-core photo-polymerisation - fabrication of an optical fibre-based pH sensor,” Analyst (Lond.) 142(19), 3569–3572 (2017).
[Crossref] [PubMed]

Chemistry (1)

S. G. Stratton, G. H. Taumoefolau, G. E. Purnell, M. Rasooly, W. L. Czaplyski, and E. J. Harbron, “Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects,” Chemistry 23(56), 14064–14072 (2017).
[Crossref] [PubMed]

Curr. Trends Nat. Sci. (1)

B. R. Mahdi, H. D. Al-Attabi, and S. D. Salman, “Manufacture of fiber optic sensors to measure the pH water,” Curr. Trends Nat. Sci. 5(9), 55–61 (2016).

Fiber Opt. Sens. (1)

L. Rovati, P. Fabbri, L. Ferrari, and F. Pilati, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix,” Fiber Opt. Sens. 5, 415–439 (2012).

IEEE J Sel Top. Quantum Electron. (1)

Y. Zheng, X. Dong, K. Ni, C. Chan, and P. P. Shum, “Miniature pH sensor based on optical fiber Fabry-Perot interferometer,” IEEE J Sel Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

IEEE Photonics J. (1)

X. F. Li, S. Lin, J. L. Y. Zhang, and H. O. T. Ueda, “Fiber-Optic Temperature Sensor Based on Difference of Thermal Expansion Coefficient Between Fused Silica and Metallic Materials,” IEEE Photonics J. 4(1), 155–162 (2012).
[Crossref]

Indian J. Pure Appl. Phy. (1)

A. L. Chaudhari and A. D. Shaligram, “Development of fiber optic pH meter based on colorimetric principle,” Indian J. Pure Appl. Phy. 40(2), 132–136 (2002).

J. Am. Chem. Soc. (1)

Q. Zhao, M. Yin, A. P. Zhang, S. Prescher, M. Antonietti, and J. Yuan, “Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing,” J. Am. Chem. Soc. 135(15), 5549–5552 (2013).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 1–9 (2017).
[Crossref]

J. Biomed. Mater. Res. B Appl. Biomater. (1)

R. Gautam, R. D. Singh, V. P. Sharma, R. Siddhartha, P. Chand, and R. Kumar, “Biocompatibility of polymethylmethacrylate resins used in dentistry,” J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1444–1450 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

Z. Gui, J. Qian, M. Yin, Q. An, B. Gu, and A. Zhang, “A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films,” J. Mater. Chem. 20(36), 7754 (2010).
[Crossref]

Light Sci. Appl. (1)

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

M. Rui, C. Marques, O. Bang, and B. Ortega, “Moiré phase-shifted fiber Bragg gratings in polymer optical fibers,” Opt. Fiber Technol. 41, 78–81 (2018).

Opt. Lett. (1)

Sci. Adv. Mater. (1)

S. R. Ankireddy and J. Kim, “Fabrication of Optical Fiber pH Sensor Based on Near-Infrared (NIR) Quantum Dots,” Sci. Adv. Mater. 6(11), 2562–2565 (2014).
[Crossref]

Sens. Actuators B Chem. (3)

B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet, and G. Voirin, “Development of a polymer optical fiber pH sensor for on-body monitoring application,” Sens. Actuators B Chem. 194, 238–248 (2014).
[Crossref]

A. Lopez Aldaba, Á. González-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
[Crossref]

C. R. Zamarreño, J. Bravo, J. Goicoechea, I. R. Matias, and F. J. Arregui, “Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings,” Sens. Actuators B Chem. 128(1), 138–144 (2007).
[Crossref]

Other (2)

B. C. Avram, H. Bongtae, and K. J. Kim, “Thermo-Optic Effects in Polymer Bragg Gratings,” in Bragg gratings, M. Wu and R. S. Rogowski, (Springer, 2003).

P. Zubiate, C. R. Zamarreno, I. Del Villar, I. R. Matias, and F. J. Arregui, “D-shape optical fiber pH sensor based on Lossy Mode Resonances (LMRs),” in Proceedings of IEEE SENSORS (IEEE, 2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross section of the pH sensor showing the POF encapsulated in the center of the UV-cured PEGDA. Inset: the cross section of core area of POF: the length of max and minor axes are 5.7μm and 5.0μm, respectively (b) Top view of the mold with a 1 mm wide and 1 mm deep groove for fabricating the pH sensor. The inset shows the fabricated sensor.
Fig. 2
Fig. 2 Wavelength response of the sensor to solutions of different pH values: (a) spectrum shift as function of pH (b) response time(tr) with different pH values—inset: the average response time in the pH range of 6.5–6.
Fig. 3
Fig. 3 Different diameter POFBG coated with PEGDA immerged in solutions of different pH values.
Fig. 4
Fig. 4 pH measurement using POFs with and without PEGDA coating.
Fig. 5
Fig. 5 PEGDA POFBG sensors with varying thickness: (a) response sensitivity, and (b) step response time.
Fig. 6
Fig. 6 Temperature response of the POFBG pH sensor.

Tables (1)

Tables Icon

Table 1 Sensor Performance of the Present System Compared to Other pH Fiber-optics Sensors based on Glass Fibers in acidic range

Metrics