Abstract

Two photoconductive emitters - one with a self-complementary square spiral antenna, and the other with a resonant slot antenna - were fabricated on a GaAs epilayer embedded with ErAs quantum dots. Driven with 1550 nm mode-locked lasers, ~117 μW broadband THz power was generated from the device with the spiral antenna, and ~1.2 μW from the device with resonant slot antenna. The optical-to-THz conversion is through extrinsic photoconductivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
THz generation using extrinsic photoconductivity at 1550 nm

J. R. Middendorf and E. R. Brown
Opt. Express 20(15) 16504-16509 (2012)

Toward a 1550 nm InGaAs photoconductive switch for terahertz generation

Kimani K. Williams, Z. D. Taylor, J. Y. Suen, Hong Lu, R. S. Singh, A. C. Gossard, and E. R. Brown
Opt. Lett. 34(20) 3068-3070 (2009)

Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0W peak power

Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard
Opt. Lett. 31(11) 1729-1731 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
    [Crossref]
  2. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
    [Crossref]
  3. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
    [Crossref]
  4. F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
    [Crossref]
  5. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
    [Crossref]
  6. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
    [Crossref]
  7. A. Fekecs, M. Bernier, D. Morris, M. Chicoine, F. Schiettekatte, P. Charette, and R. Arès, “Fabrication of high resistivity cold-implanted InGaAsP photoconductors for efficient pulsed terahertz devices,” Opt. Mater. Express 1(7), 1165–1177 (2011).
    [Crossref]
  8. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz Generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
    [Crossref] [PubMed]
  9. S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett. 82(10), 1128–1130 (1993).
    [Crossref]
  10. S. Sethi and P. K. Bhattacharya, “Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy,” J. Electron. Mater. 25(3), 467–477 (1996).
    [Crossref]
  11. I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
    [Crossref]
  12. C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
    [Crossref]
  13. M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
    [Crossref] [PubMed]
  14. J. R. Middendorf and E. R. Brown, “THz generation using extrinsic photoconductivity at 1550 nm,” Opt. Express 20(15), 16504–16509 (2012).
    [Crossref]
  15. M. Martin and E. R. Brown, “Photoconductive Materials for THz Generation at 1550 nm: Er:GaAs vs InGaAs Based Materials,” in Photonics West (2015).
  16. E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
    [Crossref]
  17. C. Lin and C. P. Lee, “Comparison of Au/Ni/Ge, Au/Pd/Ge, and Au/Pt/Ge Ohmic contacts to n-type GaAs,” J. Appl. Phys. 67(1), 260–263 (1990).
    [Crossref]
  18. S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).
  19. N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
    [Crossref] [PubMed]
  20. E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
    [Crossref]
  21. G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
    [Crossref]
  22. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
    [Crossref] [PubMed]
  23. T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
    [Crossref] [PubMed]
  24. B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
    [Crossref]

2017 (3)

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

2014 (1)

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).

2013 (1)

2012 (1)

2011 (3)

2010 (1)

2008 (1)

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

2007 (1)

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

2005 (3)

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[Crossref]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

2003 (1)

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

2000 (1)

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

1996 (1)

S. Sethi and P. K. Bhattacharya, “Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy,” J. Electron. Mater. 25(3), 467–477 (1996).
[Crossref]

1993 (1)

S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett. 82(10), 1128–1130 (1993).
[Crossref]

1992 (2)

I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
[Crossref]

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[Crossref]

1990 (1)

C. Lin and C. P. Lee, “Comparison of Au/Ni/Ge, Au/Pd/Ge, and Au/Pt/Ge Ohmic contacts to n-type GaAs,” J. Appl. Phys. 67(1), 260–263 (1990).
[Crossref]

Akalin, T.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Alcer, D.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

Arès, R.

Beck, M.

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Bernier, M.

Berry, C. W.

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).

Bhattacharya, P. K.

S. Sethi and P. K. Bhattacharya, “Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy,” J. Electron. Mater. 25(3), 467–477 (1996).
[Crossref]

S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett. 82(10), 1128–1130 (1993).
[Crossref]

Blake, G. A.

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Brown, E. R.

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

J. R. Middendorf and E. R. Brown, “THz generation using extrinsic photoconductivity at 1550 nm,” Opt. Express 20(15), 16504–16509 (2012).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[Crossref]

M. Martin and E. R. Brown, “Photoconductive Materials for THz Generation at 1550 nm: Er:GaAs vs InGaAs Based Materials,” in Photonics West (2015).

Cakmakyapan, S.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

Charette, P.

Chicoine, M.

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Coinon, C.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Dekorsy, T.

Demsar, J.

Dietz, R.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

Dietz, R. J.

Dietz, R. J. B.

Diez, C. A.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Driscoll, D. C.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[Crossref]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Ducournau, G.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Fekecs, A.

Feldman, A. D.

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

Freytag, N.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Gerhard, M.

Globisch, B.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

Göbel, T.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Opt. Lett. 38(20), 4197–4199 (2013).
[Crossref] [PubMed]

Gossard, A. C.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[Crossref]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

Griebel, M.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Gupta, S.

S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett. 82(10), 1128–1130 (1993).
[Crossref]

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[Crossref]

Hanson, M. P.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[Crossref]

Harvey, T. E.

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

Hashemi, M. R.

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).

Helm, M.

Hemmati, S.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

Hindle, F.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Hohmuth, R.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Jackson, A. W.

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

Jarrahi, M.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Kadow, C.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Klatt, G.

Koch, M.

Kohlhaas, R.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

Kuhl, J.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Lampin, J.-F.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Lee, C. P.

C. Lin and C. P. Lee, “Comparison of Au/Ni/Ge, Au/Pd/Ge, and Au/Pt/Ge Ohmic contacts to n-type GaAs,” J. Appl. Phys. 67(1), 260–263 (1990).
[Crossref]

Lepilliet, S.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Lin, C.

C. Lin and C. P. Lee, “Comparison of Au/Ni/Ge, Au/Pd/Ge, and Au/Pt/Ge Ohmic contacts to n-type GaAs,” J. Appl. Phys. 67(1), 260–263 (1990).
[Crossref]

Lu, H.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Martin, M.

M. Martin and E. R. Brown, “Photoconductive Materials for THz Generation at 1550 nm: Er:GaAs vs InGaAs Based Materials,” in Photonics West (2015).

Maryenko, D.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Masselink, W.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Matsuura, S.

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

Matthäus, G.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Middendorf, J. R.

Mingardi, A.

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

Mirin, R. P.

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

Morris, D.

Mouret, G.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Mourou, G. A.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[Crossref]

Nolte, S.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Notni, G.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Ospald, F.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Peaker, A. R.

I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
[Crossref]

Peytavit, E.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Poole, I.

I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
[Crossref]

Richter, W.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Riehemann, S.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Roehle, H.

Sartorius, B.

Schäfer, H.

Schell, M.

Schiettekatte, F.

Semtsiv, M.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

Sethi, S.

S. Sethi and P. K. Bhattacharya, “Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy,” J. Electron. Mater. 25(3), 467–477 (1996).
[Crossref]

S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett. 82(10), 1128–1130 (1993).
[Crossref]

Singer, K. E.

I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
[Crossref]

Smet, J. H.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Stanze, D.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Tünnermann, A.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Voitsch, M.

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

von Klitzing, K.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Whitaker, J. F.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[Crossref]

Winnerl, S.

Wright, A. C.

I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
[Crossref]

Yang, S.-H.

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).

Yardimci, N. T.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

Zhang, W.-D.

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

Appl. Phys. Lett. (9)

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

E. R. Brown, A. Mingardi, W.-D. Zhang, A. D. Feldman, T. E. Harvey, and R. P. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on Er fraction in GaAs:Er,” Appl. Phys. Lett. 111(3), 031104 (2017).
[Crossref]

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett. 82(10), 1128–1130 (1993).
[Crossref]

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4(5), 575–581 (2014).

J. Appl. Phys. (2)

C. Lin and C. P. Lee, “Comparison of Au/Ni/Ge, Au/Pd/Ge, and Au/Pt/Ge Ohmic contacts to n-type GaAs,” J. Appl. Phys. 67(1), 260–263 (1990).
[Crossref]

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121(5), 053102 (2017).
[Crossref]

J. Cryst. Growth (1)

I. Poole, K. E. Singer, A. R. Peaker, and A. C. Wright, “Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs,” J. Cryst. Growth 121(1-2), 121–131 (1992).
[Crossref]

J. Electron. Mater. (1)

S. Sethi and P. K. Bhattacharya, “Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy,” J. Electron. Mater. 25(3), 467–477 (1996).
[Crossref]

Nat. Mater. (1)

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Sci. Rep. (1)

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref] [PubMed]

Other (2)

M. Martin and E. R. Brown, “Photoconductive Materials for THz Generation at 1550 nm: Er:GaAs vs InGaAs Based Materials,” in Photonics West (2015).

G. Matthäus, R. Hohmuth, M. Voitsch, W. Richter, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, ” Micro lens coupled large area photoconductive switch for powerful THz emission,” in International Conference on Infrared, Millimeter and Terahertz Waves (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The photogeneration and relaxation processes for extrinsic photoconductivity in GaAs:Er embedded with ErAs quantum dots.
Fig. 2
Fig. 2 a) Photoconductive device #1 with square spiral antenna; and b) photoconductive device #2 with half-wave resonant slot antenna. The green circle shows the active region.
Fig. 3
Fig. 3 Darkcurrent and photocurrent of device #1 vs. bias voltage.
Fig. 4
Fig. 4 a) Broadband THz power vs bias voltage for device #1 measured with a Golay cell. The laser power was kept the same at 83 mW. b) THz power vs. laser power at a fixed bias voltage of 100 V.
Fig. 5
Fig. 5 a) The interferogram for device #1 measured with Golay cell detector, and b) the FFT spectrum of a). Also plotted in b) are three SNR points obtained with three different Schottky diode detectors.
Fig. 6
Fig. 6 Darkcurrent, photocurrent (left axis), and THz power (right axis) vs. bias voltage for device #2.
Fig. 7
Fig. 7 a) The interferogram of device #2, b) the power spectrum of a) after FFT transform and its comparison with Fig. 5(b).

Tables (1)

Tables Icon

Table 1 State-of-art THz sources at 780-nm and 1550-nm based upon intrinsic photoconductivity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R substrate = ( n substrate 1 n substrate +1 ) 2

Metrics