Abstract

Systematic errors generated from internal misalignments of a lab-built terrestrial laser scanner (TLS) need to be calibrated to improve the positional accuracy of point-cloud. Hence, an angle measurement error model was established by the ray-tracing method involving five types of mounting angle errors, which were estimated by two-face method and network method. Experimental results show that the two errors including mirror tilt error and vertical index offset error are regarded as main systematic errors for lab-built TLS, and consequently the positional accuracy of the point-cloud can be improved in horizontal and vertical directions. The proposed self-calibration method can be used for other TLS by adjusting the angle measurement error model.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Trimble GX200 and Riegl LMS-Z390i sensor self-calibration

D. González-Aguilera, P. Rodríguez-Gonzálvez, J. Armesto, and P. Arias
Opt. Express 19(3) 2676-2693 (2011)

Surface reflectance retrieval from the intensity data of a terrestrial laser scanner

Kai Tan and Xiaojun Cheng
J. Opt. Soc. Am. A 33(4) 771-778 (2016)

Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging

Yinqiao Cai, Xiaohua Tong, Peng Tong, Hongyi Bu, and Rong Shu
Appl. Opt. 49(34) H11-H19 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
    [Crossref]
  2. A. Kilpelä, Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications, Ph. D Thesis, University of Oulu (Finland, 2004).
  3. Y. Reshetyuk, “A unified approach to self-calibration of terrestrial laser scanners,” ISPRS J. Photogramm. Remote Sens. 65(5), 445–456 (2010).
    [Crossref]
  4. L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
    [Crossref] [PubMed]
  5. D. D. Lichti and M. G. Licht, “Experiences with terrestrial laser scanner modelling and accuracy assessment,” in Proceeding of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, (ISPRS, 2006), pp. 155–160.
  6. C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).
  7. T. P. Kersten, H. Sternberg, and K. Mechelke, “Investigations into the accuracy behavior of the terrestrial laser scanning system Mensi GS100,” in Proceedings of the Optical 3-D Measurement Techniques VII, A. Gruen and H. Kahmen, eds. (2005), pp. 122–131.
  8. D. D. Lichti, “Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system,” ISPRS J. Photogramm. Remote Sens. 61(5), 307–324 (2007).
    [Crossref]
  9. D. González-Aguilera, P. Rodríguez-Gonzálvez, J. Armesto, and P. Arias, “Trimble GX200 and Riegl LMS-Z390i sensor self-calibration,” Opt. Express 19(3), 2676–2693 (2011).
    [Crossref] [PubMed]
  10. D. D. Lichti, S. Brüstle, and J. Franke, “Self-calibration and analysis of the Surphaser 25HS 3D scanner,” presented at Strategic Integration of Surveying Services of FIG Working Week, Hong Kong SAR, China, 13–17 May. 2007.
  11. B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
    [Crossref]
  12. C. Holst and H. Kuhlmann, “Challenges and present fields of action at laser scanner based deformation analyses,” J. Appl. Geodesy 10(1), 17–25 (2016).
    [Crossref]
  13. D. D. Lichti, “A review of geometric models and self-calibration methods for terrestrial laser scanners,” Bol. Ciênc. Geod. 16(1), 3–19 (2010).
  14. D. D. Lichti, “Terrestrial laser scanner self-calibration: Correlation sources and their mitigation,” ISPRS J. Photogramm. Remote Sens. 65(1), 93–102 (2010).
    [Crossref]
  15. D. García-San-Miguel and J. L. Lerma, “Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy,” ISPRS J. Photogramm. Remote Sens. 79, 122–136 (2013).
    [Crossref]
  16. D. D. Lichti, “Ray-Tracing Method for Deriving Terrestrial Laser Scanner Systematic Errors,” J. Surv. Eng. 143(2), 06016005 (2017).
    [Crossref]
  17. B. Hughes, M. Ferrucci, and A. B. Forbes, “Preliminary investigation into the use of a network-based technique for the calibration of 3D laser scanners,” National Physical Laboratory Report ENG 59, (2015).
  18. Y. Reshetyuk, Investigation and calibration of pulsed time-of-flight terrestrial laser scanners, Licentiate Thesis, Royal Institute of Technology (Sweden, 2006).
  19. F. Gielsdorf, A. Rietdorf, and L. Gruendig, “A concept for the calibration of terrestrial laser scanners,” presented at FIG Working Week, Athens, Greece, 22–17 May. 2004.
  20. J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
    [Crossref] [PubMed]
  21. M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.
  22. T. Medić, C. Holst, and H. Kuhlmann, “Towards system calibration of panoramic laser scanners from a single station,” Sensors (Basel) 17(5), 28513548 (2017).
    [PubMed]
  23. X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
    [Crossref] [PubMed]
  24. X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
    [Crossref] [PubMed]
  25. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
    [Crossref]
  26. J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proceedings of IEEE International Conference on Evolutionary Computation (IEEE, 1997), pp. 303–308.
    [Crossref]
  27. M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
    [Crossref]

2018 (1)

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

2017 (4)

D. D. Lichti, “Ray-Tracing Method for Deriving Terrestrial Laser Scanner Systematic Errors,” J. Surv. Eng. 143(2), 06016005 (2017).
[Crossref]

T. Medić, C. Holst, and H. Kuhlmann, “Towards system calibration of panoramic laser scanners from a single station,” Sensors (Basel) 17(5), 28513548 (2017).
[PubMed]

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
[Crossref] [PubMed]

2016 (2)

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

C. Holst and H. Kuhlmann, “Challenges and present fields of action at laser scanner based deformation analyses,” J. Appl. Geodesy 10(1), 17–25 (2016).
[Crossref]

2015 (1)

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

2014 (1)

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

2013 (2)

J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
[Crossref] [PubMed]

D. García-San-Miguel and J. L. Lerma, “Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy,” ISPRS J. Photogramm. Remote Sens. 79, 122–136 (2013).
[Crossref]

2011 (1)

2010 (3)

D. D. Lichti, “A review of geometric models and self-calibration methods for terrestrial laser scanners,” Bol. Ciênc. Geod. 16(1), 3–19 (2010).

D. D. Lichti, “Terrestrial laser scanner self-calibration: Correlation sources and their mitigation,” ISPRS J. Photogramm. Remote Sens. 65(1), 93–102 (2010).
[Crossref]

Y. Reshetyuk, “A unified approach to self-calibration of terrestrial laser scanners,” ISPRS J. Photogramm. Remote Sens. 65(5), 445–456 (2010).
[Crossref]

2007 (1)

D. D. Lichti, “Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system,” ISPRS J. Photogramm. Remote Sens. 61(5), 307–324 (2007).
[Crossref]

2002 (1)

M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Abbas, M. A.

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.

Arias, P.

Armesto, J.

Astrelin, A.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Blackburn, C.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Chong, A. K.

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.

Chow, J. C. K.

J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
[Crossref] [PubMed]

Clerc, M.

M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
[Crossref]

Ferrucci, M.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

García-San-Miguel, D.

D. García-San-Miguel and J. L. Lerma, “Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy,” ISPRS J. Photogramm. Remote Sens. 79, 122–136 (2013).
[Crossref]

Gerner, G.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Glennie, C.

J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
[Crossref] [PubMed]

González-Aguilera, D.

Hartzell, P.

J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
[Crossref] [PubMed]

Holst, C.

T. Medić, C. Holst, and H. Kuhlmann, “Towards system calibration of panoramic laser scanners from a single station,” Sensors (Basel) 17(5), 28513548 (2017).
[PubMed]

C. Holst and H. Kuhlmann, “Challenges and present fields of action at laser scanner based deformation analyses,” J. Appl. Geodesy 10(1), 17–25 (2016).
[Crossref]

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

Huyan, J.

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

Kennedy, J.

M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proceedings of IEEE International Conference on Evolutionary Computation (IEEE, 1997), pp. 303–308.
[Crossref]

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
[Crossref]

Kuhlmann, H.

T. Medić, C. Holst, and H. Kuhlmann, “Towards system calibration of panoramic laser scanners from a single station,” Sensors (Basel) 17(5), 28513548 (2017).
[PubMed]

C. Holst and H. Kuhlmann, “Challenges and present fields of action at laser scanner based deformation analyses,” J. Appl. Geodesy 10(1), 17–25 (2016).
[Crossref]

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

Lee, V.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Lerma, J. L.

D. García-San-Miguel and J. L. Lerma, “Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy,” ISPRS J. Photogramm. Remote Sens. 79, 122–136 (2013).
[Crossref]

Li, D.

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

Li, X.

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

Licht, M. G.

D. D. Lichti and M. G. Licht, “Experiences with terrestrial laser scanner modelling and accuracy assessment,” in Proceeding of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, (ISPRS, 2006), pp. 155–160.

Lichti, D. D.

D. D. Lichti, “Ray-Tracing Method for Deriving Terrestrial Laser Scanner Systematic Errors,” J. Surv. Eng. 143(2), 06016005 (2017).
[Crossref]

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
[Crossref] [PubMed]

D. D. Lichti, “A review of geometric models and self-calibration methods for terrestrial laser scanners,” Bol. Ciênc. Geod. 16(1), 3–19 (2010).

D. D. Lichti, “Terrestrial laser scanner self-calibration: Correlation sources and their mitigation,” ISPRS J. Photogramm. Remote Sens. 65(1), 93–102 (2010).
[Crossref]

D. D. Lichti, “Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system,” ISPRS J. Photogramm. Remote Sens. 61(5), 307–324 (2007).
[Crossref]

D. D. Lichti and M. G. Licht, “Experiences with terrestrial laser scanner modelling and accuracy assessment,” in Proceeding of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, (ISPRS, 2006), pp. 155–160.

M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.

Majid, Z.

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.

Medic, T.

T. Medić, C. Holst, and H. Kuhlmann, “Towards system calibration of panoramic laser scanners from a single station,” Sensors (Basel) 17(5), 28513548 (2017).
[PubMed]

Milligan, S.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Muralikrishnan, B.

L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
[Crossref] [PubMed]

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Neuner, H.

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

Palmateer, J.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Petrov, P.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Phillips, S.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Rachakonda, P.

L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
[Crossref] [PubMed]

Reshetyuk, Y.

Y. Reshetyuk, “A unified approach to self-calibration of terrestrial laser scanners,” ISPRS J. Photogramm. Remote Sens. 65(5), 445–456 (2010).
[Crossref]

Rodríguez-Gonzálvez, P.

Sawyer, D.

L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
[Crossref] [PubMed]

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Setan, H.

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.

Wang, H.

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

Wang, L.

L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
[Crossref] [PubMed]

Wieser, A.

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

Wunderlich, T.

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

Xie, X.

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

Xu, L.

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

Yakovlev, Y.

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Yang, B.

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

Allgemeine Vermessungs Nachrichten (1)

C. Holst, H. Neuner, A. Wieser, T. Wunderlich, and H. Kuhlmann, “Calibration of terrestrial laser scanners,” Allgemeine Vermessungs Nachrichten 123(6), 147–157 (2016).

Bol. Ciênc. Geod. (1)

D. D. Lichti, “A review of geometric models and self-calibration methods for terrestrial laser scanners,” Bol. Ciênc. Geod. 16(1), 3–19 (2010).

IEEE Trans. Evol. Comput. (1)

M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (4)

D. D. Lichti, “Terrestrial laser scanner self-calibration: Correlation sources and their mitigation,” ISPRS J. Photogramm. Remote Sens. 65(1), 93–102 (2010).
[Crossref]

D. García-San-Miguel and J. L. Lerma, “Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy,” ISPRS J. Photogramm. Remote Sens. 79, 122–136 (2013).
[Crossref]

D. D. Lichti, “Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system,” ISPRS J. Photogramm. Remote Sens. 61(5), 307–324 (2007).
[Crossref]

Y. Reshetyuk, “A unified approach to self-calibration of terrestrial laser scanners,” ISPRS J. Photogramm. Remote Sens. 65(5), 445–456 (2010).
[Crossref]

J. Appl. Geodesy (1)

C. Holst and H. Kuhlmann, “Challenges and present fields of action at laser scanner based deformation analyses,” J. Appl. Geodesy 10(1), 17–25 (2016).
[Crossref]

J. Surv. Eng. (1)

D. D. Lichti, “Ray-Tracing Method for Deriving Terrestrial Laser Scanner Systematic Errors,” J. Surv. Eng. 143(2), 06016005 (2017).
[Crossref]

Meas. Sci. Technol. (1)

L. Wang, B. Muralikrishnan, P. Rachakonda, and D. Sawyer, “Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods,” Meas. Sci. Technol. 28(6), 065016 (2017).
[Crossref] [PubMed]

Measurement (1)

M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, “An on-site approach for the self-calibration of terrestrial laser scanner,” Measurement 52, 111–123 (2014).
[Crossref]

Opt. Express (1)

Precis. Eng. (1)

B. Muralikrishnan, M. Ferrucci, D. Sawyer, G. Gerner, V. Lee, C. Blackburn, S. Phillips, P. Petrov, Y. Yakovlev, A. Astrelin, S. Milligan, and J. Palmateer, “Volumetric performance evaluation of a laser scanner based on geometric error model,” Precis. Eng. 40, 139–150 (2015).
[Crossref]

Sensors (Basel) (4)

J. C. K. Chow, D. D. Lichti, C. Glennie, and P. Hartzell, “Improvements to and comparison of static terrestrial LiDAR self-calibration methods,” Sensors (Basel) 13(6), 7224–7249 (2013).
[Crossref] [PubMed]

T. Medić, C. Holst, and H. Kuhlmann, “Towards system calibration of panoramic laser scanners from a single station,” Sensors (Basel) 17(5), 28513548 (2017).
[PubMed]

X. Li, H. Wang, B. Yang, J. Huyan, and L. Xu, “Influence of time-pickoff circuit parameters on LiDAR range precision,” Sensors (Basel) 17(10), 2369 (2017).
[Crossref] [PubMed]

X. Li, B. Yang, X. Xie, D. Li, and L. Xu, “Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision,” Sensors (Basel) 18(4), 1156 (2018).
[Crossref] [PubMed]

Other (10)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
[Crossref]

J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proceedings of IEEE International Conference on Evolutionary Computation (IEEE, 1997), pp. 303–308.
[Crossref]

M. A. Abbas, H. Setan, Z. Majid, D. D. Lichti, and A. K. Chong, “A self-calibration of the Leica Scan Station C10 scanner,” in Proceedings of IEEE Conference on Business Engineering and Industrial Applications Colloquium (IEEE, 2013), pp. 262–266.

B. Hughes, M. Ferrucci, and A. B. Forbes, “Preliminary investigation into the use of a network-based technique for the calibration of 3D laser scanners,” National Physical Laboratory Report ENG 59, (2015).

Y. Reshetyuk, Investigation and calibration of pulsed time-of-flight terrestrial laser scanners, Licentiate Thesis, Royal Institute of Technology (Sweden, 2006).

F. Gielsdorf, A. Rietdorf, and L. Gruendig, “A concept for the calibration of terrestrial laser scanners,” presented at FIG Working Week, Athens, Greece, 22–17 May. 2004.

D. D. Lichti, S. Brüstle, and J. Franke, “Self-calibration and analysis of the Surphaser 25HS 3D scanner,” presented at Strategic Integration of Surveying Services of FIG Working Week, Hong Kong SAR, China, 13–17 May. 2007.

T. P. Kersten, H. Sternberg, and K. Mechelke, “Investigations into the accuracy behavior of the terrestrial laser scanning system Mensi GS100,” in Proceedings of the Optical 3-D Measurement Techniques VII, A. Gruen and H. Kahmen, eds. (2005), pp. 122–131.

A. Kilpelä, Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications, Ph. D Thesis, University of Oulu (Finland, 2004).

D. D. Lichti and M. G. Licht, “Experiences with terrestrial laser scanner modelling and accuracy assessment,” in Proceeding of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, (ISPRS, 2006), pp. 155–160.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The assemble view of the coaxial lab-built TLS system with two channels. It can get the 3D point-cloud of target, which consists of emitting and receiving unit, ranging and controlling unit and scanning unit.
Fig. 2
Fig. 2 The schematic diagram of the system scanning mode, which is composed of a rotary table and a 45° rotating mirror installed on a mirror motor. A panoramic scanning can be carried out when the incident laser beam rotates in horizontal and vertical directions.
Fig. 3
Fig. 3 Models of beam tilt error and transit tilt error. (a): The beam tilt error including the angle β 1 and the angle β 2 . The green-solid-line is the actual incident laser beam, the blue-dash-line and red-dash-line are projection lines on XOY plane and XOZ plane respectively. (b): The transit tilt error. γ is the angle between the actual horizontal axis and the ideal one.
Fig. 4
Fig. 4 The standing tilt error of the TLS system, Z’ axis is projected onto YOZ plane and XOZ plane respectively. Red-solid-lines are the actual coordinate axes. (a) The standing tilt error α 1 along Y; (b) The standing tilt error α 2 along X.
Fig. 5
Fig. 5 Models of mirror tilt error and vertical index offset error. (a): The mirror tilt error of the TLS system. The red-dash-line is the actual initial unit normal vector of the rotating mirror and the blue–dash-line is the ideal one. (b): The vertical index offset error of the TLS system. The red-solid-line is the actual zero of the vertical angle encoder.
Fig. 6
Fig. 6 Histograms of the errors of parameters estimation. (a) Angle error histogram of varying coordinates without ranging error; (b) Angle error histogram of varying set-values of parameters with ranging error.
Fig. 7
Fig. 7 The lab-built TLS self-calibration experiments: (a) is experiment photo, which shows planar targets, the lab-built-TLS and the controlling unit of the TLS. (b) is point-cloud data obtained in experiments, which shows the positions of three targets with the size of 0.64m × 0.64m around TLS system.
Fig. 8
Fig. 8 The raw point-clouds of three planar targets in two-face mode. (a), (b), (c) are top views of Target 1, 2 and 3 respectively. (d), (e), (f) are front views of Target 1, 2 and 3 respectively.
Fig. 9
Fig. 9 The relationship between the ranging precision and the echo intensity of the lab-built TLS. The ranging precision always decreases with the increase of the echo amplitude.
Fig. 10
Fig. 10 The point-clouds of three planar targets after self-calibration. (a), (b), (c) are top views of Target 1, 2 and 3 respectively. (d), (e), (f) are front views of Target 1, 2 and 3 respectively.

Tables (4)

Tables Icon

Table 1 Model parameters for the lab-built TLS

Tables Icon

Table 2 The results of parameters estimation

Tables Icon

Table 3 The measurement precisions before and after self-calibration in two directions

Tables Icon

Table 4 Precisions after self-calibration and parameter estimations with different parameter combinations

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

x j i = ( L j i Δ L j i ) cos ( φ v , j i Δ φ v , j i ) cos ( φ h , j i Δ φ h , j i )
y j i = ( L j i Δ L j i ) cos ( φ v , j i Δ φ v , j i ) sin ( φ h , j i Δ φ h , j i )
z j i = ( L j i Δ L j i ) sin ( φ v , j i Δ φ v , j i )
n 01 = ( 2 2 , 2 2 , 0 ) T
n 1 = R Z ( φ h 90 ) R X ( φ v ) n 01
R X ( φ v ) = [ 1 0 0 0 cos φ v sin φ v 0 sin φ v cos φ v ] , R Z ( φ h 90 ) = [ sin φ h cos φ h 0 cos φ h sin φ h 0 0 0 1 ]
l i 0 = ( 1 , 0 , 0 ) T
l i 01 = ( cos 2 β 1 sin 2 β 2 , sin β 2 , sin β 1 ) T
l i 1 = R Z ( φ h 90 ) l i 01
l o 1 = l i 1 2 n 1 ( n 1 l i 1 )
l o 1 = ( x o 1 , y o 1 , z o 1 ) T
φ h , r 1 = arc cos x o 1 x o 1 2 + y o 1 2
φ v , r 1 = arc sin z o 1 x o 1 2 + y o 1 2 + z o 1 2
Δ φ h 1 = φ h φ h , r 1 sin ( φ h φ h , r 1 ) , Δ φ v 1 = φ v φ v , r 1 sin ( φ v φ v , r 1 )
Δ φ h 1 β 1 tan φ v β 2
Δ φ v 1 β 1 cos φ v β 2 sin φ v
n 2 = R Z ( φ h 90 ) R Y ( γ ) R X ' ( φ v ) n 02
R Y ( γ ) = [ cos γ 0 sin γ 0 1 0 sin γ 0 cos γ ]
Δ φ h 2 2 γ tan φ v
Δ φ v 2 γ cos φ v
n 3 = R Z ' ( φ h 90 ) R X ' ( φ v ) n 03
l o x y z 31 = R X ( α 1 ) l o 3
Δ φ h 31 α 1 cos φ h tan φ v
Δ φ v 31 α 1 sin φ h
Δ φ h 32 α 2 sin φ h tan φ v
Δ φ v 32 α 2 cos φ h
Δ φ h 3 α 1 cos φ h tan φ v α 2 sin φ h tan φ v
Δ φ v 3 α 1 sin φ h α 2 cos φ h
n 04 ' = R Z ( θ ) n 04
Δ φ h 4 2 θ cos φ v
Δ φ v 4 0
Δ φ v 5 = δ
Δ φ h = β 2 + ( 2 γ β 1 ) tan φ v + α 1 cos φ h tan φ v α 2 sin φ h tan φ v 2 θ cos φ v
Δ φ v = ( β 1 γ ) cos φ v β 2 sin φ v α 1 sin φ h α 2 cos φ h + δ
Δ φ h = β 2 + k ( 2 γ β 1 ) tan φ v + α 1 cos φ h tan φ v α 2 sin φ h tan φ v k 2 θ cos φ v
Δ φ v = ( β 1 γ ) cos φ v k β 2 sin φ v α 1 sin φ h α 2 cos φ h + k δ
φ f h m , j i φ b h m , j i = ( 2 γ β 1 ) ( tan φ f v m , j i + tan φ b v m , j i ) 2 θ ( 1 cos φ f v m , j i + 1 cos φ b v m , j i )
φ f v m , j i φ b v m , j i = β 2 ( sin φ f v m , j i + sin φ b v m , j i ) + 2 δ
[ 2 γ β 1 , β 2 , θ , δ ] T = ( A T A ) 1 A T Y
A = [ tan φ f v m , j i + tan φ b v m , j i 0 0 ( sin φ f v m , j i + sin φ b v m , j i ) 2 ( 1 cos φ f v m , j i + 1 cos φ b v m , j i ) 0 0 2 ] Q × 4
Y = [ φ f h m , j i φ b h m , j i φ f v m , j i φ b v m , j i ] Q × 1
σ φ h = 1 m n i = 1 m j = 1 n | φ f h m , j i φ b h m , j i 2 |
σ φ v = 1 m n i = 1 m j = 1 n | φ f v m , j i φ b v m , j i 2 |

Metrics