Abstract

Aiming to achieve real 3D chiral metamaterial structure, a new strategy is proposed. During which a 2D to 3D conversion mechanism based on integrated pneumatic actuator is used to provide a relatively simple yet effective process solution. With this concept, only the lithography-based planar process is required, and a symmetric tuning capability over the shape of the 3D chiral metamaterial as well as its chirality both can be achieved through controlling the applied pressure. At the same time, the resultant optical activity and circular dichroism associated with this tunable 3D chiral metamaterial are also studied and exciting characteristics demonstrating enantiomeric symmetry have been successfully obtained as well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-plane gap plasmon induced strong circular dichroism in double-layer Archimedean planar metamaterials

Shuang Liang, Wei Zhang, Jing Yuan, Jianli Jiang, Jisong Qian, Jing Shu, and Liyong Jiang
Opt. Mater. Express 8(9) 2870-2879 (2018)

Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs

G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou
Opt. Mater. Express 2(12) 1702-1712 (2012)

Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial

He-Xiu Xu, Guang-Ming Wang, Mei Qing Qi, Tong Cai, and Tie Jun Cui
Opt. Express 21(21) 24912-24921 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).
  2. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House Publishers, 1994).
  3. S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg 2(1), 24 (2015).
    [Crossref] [PubMed]
  4. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
    [Crossref] [PubMed]
  5. R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
    [Crossref]
  6. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
    [Crossref] [PubMed]
  7. Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19(11), 10886–10894 (2011).
    [Crossref] [PubMed]
  8. J. Kaschke, M. Blome, S. Burger, and M. Wegener, “Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers,” Opt. Express 22(17), 19936–19946 (2014).
    [Crossref] [PubMed]
  9. R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
    [Crossref] [PubMed]
  10. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
    [Crossref]
  11. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
    [Crossref]
  12. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
    [Crossref] [PubMed]
  13. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  14. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
    [Crossref]
  15. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
    [Crossref]
  16. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  17. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
    [Crossref] [PubMed]
  18. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
    [Crossref] [PubMed]
  19. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
    [Crossref]
  20. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
    [Crossref] [PubMed]
  21. H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).
  22. H. Yu and G. Zhou, “Deformable mold based on-demand microchannel fabrication technology,” Sensor. Actuat. Biol. Chem. 183, 40–45 (2013).
  23. H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
    [Crossref]
  24. H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology,” Opt. Lett. 34(21), 3454–3456 (2009).
    [Crossref] [PubMed]
  25. D. J. Aschaffenburg, M. R. C. Williams, and C. A. Schmuttenmaer, “Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations,” J. Chem. Phys. 144(17), 174705 (2016).
    [Crossref] [PubMed]
  26. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref] [PubMed]
  27. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  28. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
    [Crossref] [PubMed]
  29. L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
    [Crossref]
  30. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  31. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
    [Crossref] [PubMed]

2016 (5)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

D. J. Aschaffenburg, M. R. C. Williams, and C. A. Schmuttenmaer, “Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations,” J. Chem. Phys. 144(17), 174705 (2016).
[Crossref] [PubMed]

2015 (5)

L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
[Crossref]

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg 2(1), 24 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

2014 (2)

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

J. Kaschke, M. Blome, S. Burger, and M. Wegener, “Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers,” Opt. Express 22(17), 19936–19946 (2014).
[Crossref] [PubMed]

2013 (2)

H. Yu and G. Zhou, “Deformable mold based on-demand microchannel fabrication technology,” Sensor. Actuat. Biol. Chem. 183, 40–45 (2013).

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

2012 (4)

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

2011 (2)

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19(11), 10886–10894 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (3)

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology,” Opt. Lett. 34(21), 3454–3456 (2009).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (1)

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
[Crossref]

2005 (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Aschaffenburg, D. J.

D. J. Aschaffenburg, M. R. C. Williams, and C. A. Schmuttenmaer, “Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations,” J. Chem. Phys. 144(17), 174705 (2016).
[Crossref] [PubMed]

Azad, A. K.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Bade, K.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Benedetti, A.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Blome, M.

Blume, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Braun, P. V.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Burger, S.

Capasso, F.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Chau, F. S.

H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology,” Opt. Lett. 34(21), 3454–3456 (2009).
[Crossref] [PubMed]

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
[Crossref]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Chen, X.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Cuscunà, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Esposito, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Fang, G. Y.

L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
[Crossref]

Fedotov, V. A.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Frölich, A.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Giessen, H.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Giorgi, M. D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Gissibl, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Guo, H.

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Hess, O.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg 2(1), 24 (2015).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Ji, R.

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Kaschke, J.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. Kaschke, M. Blome, S. Burger, and M. Wegener, “Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers,” Opt. Express 22(17), 19936–19946 (2014).
[Crossref] [PubMed]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Klotzbücher, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Koschny, T.

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Latzel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Lee, F.

H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology,” Opt. Lett. 34(21), 3454–3456 (2009).
[Crossref] [PubMed]

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
[Crossref]

Li, C.

L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
[Crossref]

Li, S.

Li, S. C.

L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
[Crossref]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, X.

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Liu, Y.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Lu, W.

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Oh, S. S.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg 2(1), 24 (2015).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Passaseo, A.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Plum, E.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Qi, L. M.

L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
[Crossref]

Radke, A.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Roller, E. M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sanvitto, D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Schmuttenmaer, C. A.

D. J. Aschaffenburg, M. R. C. Williams, and C. A. Schmuttenmaer, “Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations,” J. Chem. Phys. 144(17), 174705 (2016).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Singh, R.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Takahashi, H.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Tarantini, I.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Taylor, A. J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Thiel, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Todisco, F.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, S.

H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).

Wang, S. W.

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Wegener, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

J. Kaschke, M. Blome, S. Burger, and M. Wegener, “Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers,” Opt. Express 22(17), 19936–19946 (2014).
[Crossref] [PubMed]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Williams, M. R. C.

D. J. Aschaffenburg, M. R. C. Williams, and C. A. Schmuttenmaer, “Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations,” J. Chem. Phys. 144(17), 174705 (2016).
[Crossref] [PubMed]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Wu, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Yang, Z.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19(11), 10886–10894 (2011).
[Crossref] [PubMed]

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Yu, H.

H. Yu and G. Zhou, “Deformable mold based on-demand microchannel fabrication technology,” Sensor. Actuat. Biol. Chem. 183, 40–45 (2013).

H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology,” Opt. Lett. 34(21), 3454–3456 (2009).
[Crossref] [PubMed]

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
[Crossref]

Yu, Y.

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhao, M.

Zhao, R.

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Zhou, G.

H. Yu and G. Zhou, “Deformable mold based on-demand microchannel fabrication technology,” Sensor. Actuat. Biol. Chem. 183, 40–45 (2013).

H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology,” Opt. Lett. 34(21), 3454–3456 (2009).
[Crossref] [PubMed]

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

R. Ji, S. W. Wang, X. Liu, H. Guo, and W. Lu, “Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism,” ACS Photonics 3(12), 2368–2374 (2016).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Adv. Mater. (1)

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, and A. Passaseo, “Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition,” Adv. Opt. Mater. 2(2), 154–161 (2014).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
[Crossref]

Appl. Phys. Lett. (2)

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Spiral metamaterial for active tuning of optical activity,” Appl. Phys. Lett. 102(22), 221906 (2013).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Chin. Phys. B (1)

L. M. Qi, C. Li, G. Y. Fang, and S. C. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chin. Phys. B 24(10), 107802 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Simple Method for Fabricating Solid Microlenses With Different Focal Lengths,” IEEE Photonics Technol. Lett. 20(19), 1624–1626 (2008).
[Crossref]

J. Chem. Phys. (1)

D. J. Aschaffenburg, M. R. C. Williams, and C. A. Schmuttenmaer, “Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations,” J. Chem. Phys. 144(17), 174705 (2016).
[Crossref] [PubMed]

Nano Converg (1)

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg 2(1), 24 (2015).
[Crossref] [PubMed]

Nano Lett. (1)

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref] [PubMed]

Nanoscale (1)

R. Ji, S. W. Wang, X. Liu, X. Chen, and W. Lu, “Broadband circular polarizers constructed using helix-like chiral metamaterials,” Nanoscale 8(31), 14725–14729 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Nat. Commun. (3)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6(1), 8422 (2015).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (2)

H. Yu, G. Zhou, F. S. Chau, S. Wang, and F. Lee, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensor. Actuat. Biol. Chem. 137(2), 754–761 (2010).

H. Yu and G. Zhou, “Deformable mold based on-demand microchannel fabrication technology,” Sensor. Actuat. Biol. Chem. 183, 40–45 (2013).

Other (2)

L. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2009).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House Publishers, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the proposed 2D to 3D convertible terahertz chiral metamaterial.
Fig. 2
Fig. 2 Schematic of the 2D to 3D conversion principle.
Fig. 3
Fig. 3 Mechanical simulation for the proposed structure (a) schematic of the model used in mechanical simulation (b) simulation results of the membrane deformation as a function of the applied pressure.
Fig. 4
Fig. 4 Schematic of the model used in electromagnetic simulation.
Fig. 5
Fig. 5 Simulation results of the spectrum of (a) polarization rotation angle and (b) ellipticity angle of the proposed structure under different statuses as well as the trend.
Fig. 6
Fig. 6 Simulation results of the optical property change with respect to the applied pressure at particular frequencies (a) polarization rotation angle and (b) ellipticity angle.
Fig. 7
Fig. 7 Simulation results of (a) circular dichroism and (b) phase difference between RCP and LCP transmissions.
Fig. 8
Fig. 8 The current norm distributions on the LH spiral induced by 5kPa applied pressure for the incident circularly polarized light.
Fig. 9
Fig. 9 Simulation results of the equivalent refractive index difference between the RCP and the LCP lights.
Fig. 10
Fig. 10 Schematic of the fabrication process flow for the proposed device.
Fig. 11
Fig. 11 Schematic of the performance characterization setup.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ θ= 1 2 tan 1 [ 2 A x A y A x 2 A y 2 cos( δ y δ x ) ] η= 1 2 sin 1 [ 2 A x A y A x 2 + A y 2 sin( δ y δ x ) ] .
CD= T ++ T ,ΔΦ= Φ ++ Φ .
{ n= 1 kd cos 1 [ 1 2 S 21 ( 1 S 11 2 + S 21 2 ) ] z= ( 1+ S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 ε= n z μ=nz

Metrics