Abstract

Research has shown that biochar, when used as a soil amendment, can improve soil quality and potentially increase agriculture production. This case study was targeted at comparing the polarimetric laser reflectivities of the corn (Zea mays L.) leaf samples collected from two plots: the biochar plot with corn stover biochar previously applied, and the control plot without any biochar treatment. Specifically, measurements of the co-polarization and the cross-polarization components of the corn leaves at 532-nm laser wavelength were performed. It was discovered that the leaf samples collected from the control plot had larger depolarization ratio in comparison to these from the biochar plot. Data analysis showed that the depolarization difference was statistically significant. Such difference is attributed to the application of biochar. This study agrees with the conclusion that biochar improves soil fertility from previous literature using direct measures. In addition, it suggests that laser depolarization ratio can be used as an indicator to monitor plant growth condition. Furthermore, our finding improves the understanding and application of leaf laser polarimetry, provides future research directions toward the leaf and plant polarimetric scattering models, and will contribute to the design of future remote sensing polarimetric lidar in agriculture and forest remote sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser

James E. Kalshoven, Michael R. Tierney, Craig S. T. Daughtry, and James E. McMurtrey
Appl. Opt. 34(15) 2745-2749 (1995)

Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing

Songxin Tan and Ram M. Narayanan
Appl. Opt. 43(11) 2360-2368 (2004)

Fluorescence sensing techniques for vegetation assessment

Lawrence A. Corp, Elizabeth M. Middleton, James E. McMurtrey, Petya K. Entcheva Campbell, and L. Maryn Butcher
Appl. Opt. 45(5) 1023-1033 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Kalshoven, M. R. Tierney, C. S. T. Daughtry, and J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34(15), 2745–2749 (1995).
    [Crossref] [PubMed]
  2. V. Vanderbilt, L. Grant, and C. Daughtry, “Polarization of light scattered by vegetation,” Proc. IEEE 73(6), 1012–1024 (1985).
    [Crossref]
  3. S. Tan and R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing,” Appl. Opt. 43(11), 2360–2368 (2004).
    [Crossref] [PubMed]
  4. H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
    [Crossref]
  5. S. Cloude and E. Pottier, “An entropy based classification scheme for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote Sens. 35(1), 68–78 (1997).
    [Crossref]
  6. S. Tan, R. Narayanan, and K. Shetty, “Polarized lidar reflectance measurements of vegetation at near-infrared and green wavelengths,” Int. J. Infrared Millim. Waves 26(8), 1175–1194 (2005).
    [Crossref]
  7. S. Tan, R. Narayanan, and D. Helder, “Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar,” Proc. SPIE 5888, 58880M (2005).
    [Crossref]
  8. Teledyne Optech Airborne Survey Lidar Pegasus HA500, http://www.teledyneoptech.com/wp-content/uploads/PEGASUS-Specsheet-140624-WEB.pdf .
  9. Y. M. Govaerts, S. Jacquemoud, M. M. Verstraete, and S. L. Ustin, “Three-dimensional radiation transfer modeling in a dicotyledon leaf,” Appl. Opt. 35(33), 6585–6598 (1996).
    [Crossref] [PubMed]
  10. Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
    [Crossref]
  11. V. Dlugunovich, V. Zaitseva, and A. Tsaruk, “Polarization characteristics of He-Ne laser radiation reflected by leaves,” Proc. SPIE 4517, 74–79 (2001).
    [Crossref]
  12. X. Li and A. Strahler, “Geometric-optical modeling of a conifer forest canopy,” IEEE Trans. Geosci. Remote Sens. 23(5), 705–720 (1985).
  13. S. Jacquemoud and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote Sens. Environ. 34(2), 75–91 (1990).
    [Crossref]
  14. J. Chen and S. Leblanc, “A four-scale bidirectional reflectance model based on canopy architecture,” IEEE Trans. Geosci. Remote Sens. 35(5), 1316–1337 (1997).
    [Crossref]
  15. Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).
  16. J. Kimetu and J. Lehmann, “Stability and stabilisation of biochar and green manure in soil with different organic carbon contents,” Aust. J. Soil Res. 48(7), 577–585 (2010).
    [Crossref]
  17. R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
    [Crossref] [PubMed]
  18. D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
    [Crossref]
  19. C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
    [Crossref]
  20. F. J. Calderón, J. Benjamin, and M. F. Vigil, “A comparison of corn residue and its biochar on soil C and plant growth,” PLoS One 10(4), e0121006 (2015).
    [Crossref] [PubMed]
  21. D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
    [Crossref]
  22. C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil 337(1–2), 1–18 (2010).
    [Crossref]
  23. S. Tan and A. Khan, “Water stress detection of lilac leaves using a polarized laser,” Proc. SPIE 9610, 96100M (2015).
    [Crossref]
  24. F. Massey., “The Kolmogorov-Smirnov test for goodness of fit,” J. Am. Stat. Assoc. 46(253), 68–78 (1951).
    [Crossref]
  25. A. Khan, “Polarimetric laser measurement of plant leaves under different physiological conditions”, MS thesis, South Dakota State University, Brookings, SD 57007, USA, (2014).
  26. P. Raven, D. Jordan, and C. Smith, “Polarized directional reflectance from laurel and mullein leaves,” Opt. Eng. 41(5), 1002–1012 (2002).
    [Crossref]

2016 (1)

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

2015 (2)

F. J. Calderón, J. Benjamin, and M. F. Vigil, “A comparison of corn residue and its biochar on soil C and plant growth,” PLoS One 10(4), e0121006 (2015).
[Crossref] [PubMed]

S. Tan and A. Khan, “Water stress detection of lilac leaves using a polarized laser,” Proc. SPIE 9610, 96100M (2015).
[Crossref]

2014 (1)

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

2012 (1)

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

2011 (1)

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

2010 (2)

C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil 337(1–2), 1–18 (2010).
[Crossref]

J. Kimetu and J. Lehmann, “Stability and stabilisation of biochar and green manure in soil with different organic carbon contents,” Aust. J. Soil Res. 48(7), 577–585 (2010).
[Crossref]

2007 (1)

D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
[Crossref]

2005 (2)

S. Tan, R. Narayanan, and K. Shetty, “Polarized lidar reflectance measurements of vegetation at near-infrared and green wavelengths,” Int. J. Infrared Millim. Waves 26(8), 1175–1194 (2005).
[Crossref]

S. Tan, R. Narayanan, and D. Helder, “Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar,” Proc. SPIE 5888, 58880M (2005).
[Crossref]

2004 (1)

2002 (1)

P. Raven, D. Jordan, and C. Smith, “Polarized directional reflectance from laurel and mullein leaves,” Opt. Eng. 41(5), 1002–1012 (2002).
[Crossref]

2001 (1)

V. Dlugunovich, V. Zaitseva, and A. Tsaruk, “Polarization characteristics of He-Ne laser radiation reflected by leaves,” Proc. SPIE 4517, 74–79 (2001).
[Crossref]

1997 (2)

J. Chen and S. Leblanc, “A four-scale bidirectional reflectance model based on canopy architecture,” IEEE Trans. Geosci. Remote Sens. 35(5), 1316–1337 (1997).
[Crossref]

S. Cloude and E. Pottier, “An entropy based classification scheme for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote Sens. 35(1), 68–78 (1997).
[Crossref]

1996 (1)

1995 (1)

1990 (2)

Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
[Crossref]

S. Jacquemoud and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote Sens. Environ. 34(2), 75–91 (1990).
[Crossref]

1989 (1)

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

1985 (2)

X. Li and A. Strahler, “Geometric-optical modeling of a conifer forest canopy,” IEEE Trans. Geosci. Remote Sens. 23(5), 705–720 (1985).

V. Vanderbilt, L. Grant, and C. Daughtry, “Polarization of light scattered by vegetation,” Proc. IEEE 73(6), 1012–1024 (1985).
[Crossref]

1951 (1)

F. Massey., “The Kolmogorov-Smirnov test for goodness of fit,” J. Am. Stat. Assoc. 46(253), 68–78 (1951).
[Crossref]

Anderson, C.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Atkinson, C.

C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil 337(1–2), 1–18 (2010).
[Crossref]

Baret, F.

S. Jacquemoud and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote Sens. Environ. 34(2), 75–91 (1990).
[Crossref]

Benjamin, J.

F. J. Calderón, J. Benjamin, and M. F. Vigil, “A comparison of corn residue and its biochar on soil C and plant growth,” PLoS One 10(4), e0121006 (2015).
[Crossref] [PubMed]

Bleakley, B.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Calderón, F. J.

F. J. Calderón, J. Benjamin, and M. F. Vigil, “A comparison of corn residue and its biochar on soil C and plant growth,” PLoS One 10(4), e0121006 (2015).
[Crossref] [PubMed]

Chen, J.

J. Chen and S. Leblanc, “A four-scale bidirectional reflectance model based on canopy architecture,” IEEE Trans. Geosci. Remote Sens. 35(5), 1316–1337 (1997).
[Crossref]

Chilom, G.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Chintala, R.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Clay, D. E.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Cloude, S.

S. Cloude and E. Pottier, “An entropy based classification scheme for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote Sens. 35(1), 68–78 (1997).
[Crossref]

Clough, T.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Condron, L.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Daughtry, C.

V. Vanderbilt, L. Grant, and C. Daughtry, “Polarization of light scattered by vegetation,” Proc. IEEE 73(6), 1012–1024 (1985).
[Crossref]

Daughtry, C. S. T.

DeLuca, T.

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

Ding, Y.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Dlugunovich, V.

V. Dlugunovich, V. Zaitseva, and A. Tsaruk, “Polarization characteristics of He-Ne laser radiation reflected by leaves,” Proc. SPIE 4517, 74–79 (2001).
[Crossref]

Edwards-Jones, G.

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

Fiers, M.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Fitzgerald, J.

C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil 337(1–2), 1–18 (2010).
[Crossref]

Govaerts, Y. M.

Grant, L.

V. Vanderbilt, L. Grant, and C. Daughtry, “Polarization of light scattered by vegetation,” Proc. IEEE 73(6), 1012–1024 (1985).
[Crossref]

Gu, Z. R.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Helder, D.

S. Tan, R. Narayanan, and D. Helder, “Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar,” Proc. SPIE 5888, 58880M (2005).
[Crossref]

Hill, R.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Hipps, N.

C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil 337(1–2), 1–18 (2010).
[Crossref]

Huang, X.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Ishimaru, A.

Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
[Crossref]

Jacquemoud, S.

Jones, D.

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

Jordan, D.

P. Raven, D. Jordan, and C. Smith, “Polarized directional reflectance from laurel and mullein leaves,” Opt. Eng. 41(5), 1002–1012 (2002).
[Crossref]

Julson, J. L.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Kalshoven, J. E.

Khan, A.

S. Tan and A. Khan, “Water stress detection of lilac leaves using a polarized laser,” Proc. SPIE 9610, 96100M (2015).
[Crossref]

Kimetu, J.

J. Kimetu and J. Lehmann, “Stability and stabilisation of biochar and green manure in soil with different organic carbon contents,” Aust. J. Soil Res. 48(7), 577–585 (2010).
[Crossref]

Kong, J.

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

Kuga, Y.

Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
[Crossref]

Kumar, S.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Kuyper, T.

D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
[Crossref]

Leblanc, S.

J. Chen and S. Leblanc, “A four-scale bidirectional reflectance model based on canopy architecture,” IEEE Trans. Geosci. Remote Sens. 35(5), 1316–1337 (1997).
[Crossref]

Lehmann, J.

J. Kimetu and J. Lehmann, “Stability and stabilisation of biochar and green manure in soil with different organic carbon contents,” Aust. J. Soil Res. 48(7), 577–585 (2010).
[Crossref]

D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
[Crossref]

Li, X.

X. Li and A. Strahler, “Geometric-optical modeling of a conifer forest canopy,” IEEE Trans. Geosci. Remote Sens. 23(5), 705–720 (1985).

Li, Z.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Lim, H.

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

Liu, S.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Liu, Y.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Ma, Q.

Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
[Crossref]

Malo, D. D.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Massey, F.

F. Massey., “The Kolmogorov-Smirnov test for goodness of fit,” J. Am. Stat. Assoc. 46(253), 68–78 (1951).
[Crossref]

McMurtrey, J. E.

Murphy, D.

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

Narayanan, R.

S. Tan, R. Narayanan, and K. Shetty, “Polarized lidar reflectance measurements of vegetation at near-infrared and green wavelengths,” Int. J. Infrared Millim. Waves 26(8), 1175–1194 (2005).
[Crossref]

S. Tan, R. Narayanan, and D. Helder, “Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar,” Proc. SPIE 5888, 58880M (2005).
[Crossref]

Narayanan, R. M.

Papiernik, S. K.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Phu, P.

Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
[Crossref]

Pottier, E.

S. Cloude and E. Pottier, “An entropy based classification scheme for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote Sens. 35(1), 68–78 (1997).
[Crossref]

Raven, P.

P. Raven, D. Jordan, and C. Smith, “Polarized directional reflectance from laurel and mullein leaves,” Opt. Eng. 41(5), 1002–1012 (2002).
[Crossref]

Rice, J. A.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Rillig, M.

D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
[Crossref]

Rousk, J.

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

Schumacher, T. E.

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Sherlock, R.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Shetty, K.

S. Tan, R. Narayanan, and K. Shetty, “Polarized lidar reflectance measurements of vegetation at near-infrared and green wavelengths,” Int. J. Infrared Millim. Waves 26(8), 1175–1194 (2005).
[Crossref]

Shin, R.

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

Smith, C.

P. Raven, D. Jordan, and C. Smith, “Polarized directional reflectance from laurel and mullein leaves,” Opt. Eng. 41(5), 1002–1012 (2002).
[Crossref]

Steward, A.

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Strahler, A.

X. Li and A. Strahler, “Geometric-optical modeling of a conifer forest canopy,” IEEE Trans. Geosci. Remote Sens. 23(5), 705–720 (1985).

Swartz, A.

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

Tan, S.

S. Tan and A. Khan, “Water stress detection of lilac leaves using a polarized laser,” Proc. SPIE 9610, 96100M (2015).
[Crossref]

S. Tan, R. Narayanan, and D. Helder, “Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar,” Proc. SPIE 5888, 58880M (2005).
[Crossref]

S. Tan, R. Narayanan, and K. Shetty, “Polarized lidar reflectance measurements of vegetation at near-infrared and green wavelengths,” Int. J. Infrared Millim. Waves 26(8), 1175–1194 (2005).
[Crossref]

S. Tan and R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing,” Appl. Opt. 43(11), 2360–2368 (2004).
[Crossref] [PubMed]

Tan, X.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Tierney, M. R.

Tsaruk, A.

V. Dlugunovich, V. Zaitseva, and A. Tsaruk, “Polarization characteristics of He-Ne laser radiation reflected by leaves,” Proc. SPIE 4517, 74–79 (2001).
[Crossref]

Ustin, S. L.

van Zyl, J.

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

Vanderbilt, V.

V. Vanderbilt, L. Grant, and C. Daughtry, “Polarization of light scattered by vegetation,” Proc. IEEE 73(6), 1012–1024 (1985).
[Crossref]

Verstraete, M. M.

Vigil, M. F.

F. J. Calderón, J. Benjamin, and M. F. Vigil, “A comparison of corn residue and its biochar on soil C and plant growth,” PLoS One 10(4), e0121006 (2015).
[Crossref] [PubMed]

Warnock, D.

D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
[Crossref]

Yueh, H.

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

Zaitseva, V.

V. Dlugunovich, V. Zaitseva, and A. Tsaruk, “Polarization characteristics of He-Ne laser radiation reflected by leaves,” Proc. SPIE 4517, 74–79 (2001).
[Crossref]

Zeng, G.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Zheng, B.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Zhou, L.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Agron. Sustain. Dev. (1)

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, L. Zhou, and B. Zheng, “Biochar to improve soil fertility. A review,” Agron. Sustain. Dev. 36(36), 1-18 (2016).

Appl. Opt. (3)

Aust. J. Soil Res. (1)

J. Kimetu and J. Lehmann, “Stability and stabilisation of biochar and green manure in soil with different organic carbon contents,” Aust. J. Soil Res. 48(7), 577–585 (2010).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (4)

Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, reflection, and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sens. 28(5), 865–872 (1990).
[Crossref]

X. Li and A. Strahler, “Geometric-optical modeling of a conifer forest canopy,” IEEE Trans. Geosci. Remote Sens. 23(5), 705–720 (1985).

S. Cloude and E. Pottier, “An entropy based classification scheme for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote Sens. 35(1), 68–78 (1997).
[Crossref]

J. Chen and S. Leblanc, “A four-scale bidirectional reflectance model based on canopy architecture,” IEEE Trans. Geosci. Remote Sens. 35(5), 1316–1337 (1997).
[Crossref]

Int. J. Infrared Millim. Waves (1)

S. Tan, R. Narayanan, and K. Shetty, “Polarized lidar reflectance measurements of vegetation at near-infrared and green wavelengths,” Int. J. Infrared Millim. Waves 26(8), 1175–1194 (2005).
[Crossref]

J. Am. Stat. Assoc. (1)

F. Massey., “The Kolmogorov-Smirnov test for goodness of fit,” J. Am. Stat. Assoc. 46(253), 68–78 (1951).
[Crossref]

J. Geophys. Res. (1)

H. Lim, A. Swartz, H. Yueh, J. Kong, R. Shin, and J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res. 94(B6), 7049–7057 (1989).
[Crossref]

J. Hazard. Mater. (1)

R. Chintala, T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, S. K. Papiernik, and Z. R. Gu, “Molecular characterization of biochars and their influence on microbiological properties of soil,” J. Hazard. Mater. 279, 244–256 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

P. Raven, D. Jordan, and C. Smith, “Polarized directional reflectance from laurel and mullein leaves,” Opt. Eng. 41(5), 1002–1012 (2002).
[Crossref]

Pedobiologia (Jena) (1)

C. Anderson, L. Condron, T. Clough, M. Fiers, A. Steward, R. Hill, and R. Sherlock, “Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus,” Pedobiologia (Jena) 54(5–6), 309–320 (2011).
[Crossref]

Plant Soil (2)

C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil 337(1–2), 1–18 (2010).
[Crossref]

D. Warnock, J. Lehmann, T. Kuyper, and M. Rillig, “Mycorrhizal responses to biochar in soil – concepts and mechanisms,” Plant Soil 300(1–2), 9–20 (2007).
[Crossref]

PLoS One (1)

F. J. Calderón, J. Benjamin, and M. F. Vigil, “A comparison of corn residue and its biochar on soil C and plant growth,” PLoS One 10(4), e0121006 (2015).
[Crossref] [PubMed]

Proc. IEEE (1)

V. Vanderbilt, L. Grant, and C. Daughtry, “Polarization of light scattered by vegetation,” Proc. IEEE 73(6), 1012–1024 (1985).
[Crossref]

Proc. SPIE (3)

S. Tan, R. Narayanan, and D. Helder, “Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar,” Proc. SPIE 5888, 58880M (2005).
[Crossref]

V. Dlugunovich, V. Zaitseva, and A. Tsaruk, “Polarization characteristics of He-Ne laser radiation reflected by leaves,” Proc. SPIE 4517, 74–79 (2001).
[Crossref]

S. Tan and A. Khan, “Water stress detection of lilac leaves using a polarized laser,” Proc. SPIE 9610, 96100M (2015).
[Crossref]

Remote Sens. Environ. (1)

S. Jacquemoud and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote Sens. Environ. 34(2), 75–91 (1990).
[Crossref]

Soil Biol. Biochem. (1)

D. Jones, J. Rousk, G. Edwards-Jones, T. DeLuca, and D. Murphy, “Biochar-mediated changes in soil quality and plant growth in a three year field trial,” Soil Biol. Biochem. 45(1), 113–124 (2012).
[Crossref]

Other (2)

A. Khan, “Polarimetric laser measurement of plant leaves under different physiological conditions”, MS thesis, South Dakota State University, Brookings, SD 57007, USA, (2014).

Teledyne Optech Airborne Survey Lidar Pegasus HA500, http://www.teledyneoptech.com/wp-content/uploads/PEGASUS-Specsheet-140624-WEB.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Optical setup for the laser depolarization measurement system.
Fig. 2
Fig. 2 Experimental Setup. A piece of paper was mounted for calibration purpose in this photo.
Fig. 3
Fig. 3 Histogram distribution of the paper depolarization. Each data point contains an average of 2,000 repeated measurements. The mean of the depolarization data is 0.7932, and the standard deviation is 0.0302.
Fig. 4
Fig. 4 Scatterplot of the paper depolarization measurement under two different laser power settings. The solid red line represents x-pol = 0.7932 × co-pol, where R2 = 0.9691. The mean values for the total reflected laser (co-pol plus x-pol) at high and low laser power are 824.1495 mV and 358.8320 mV, respectively; and the standard deviation values are 49.6180 mV and 16.1747 mV, respectively.
Fig. 5
Fig. 5 Satellite image of the cornfield site (44.217616N and 96.744418W) shown the 6 4 plots. Plot 1 (at the bottom left corner of the plots) was the corn stover biochar applied field; and Plot 2 (immediately to the right of Plot 1) was the control field.
Fig. 6
Fig. 6 Two TEM images of the biochar.
Fig. 7
Fig. 7 Photographs of the corn plants taken from Plot 1 (left) and Plot 2 (right).
Fig. 8
Fig. 8 The generic pattern of the laser measurement locations on each corn leaf sample.
Fig. 9
Fig. 9 Scatterplot of the received laser reflectance at co-pol and x-pol.
Fig. 10
Fig. 10 Histogram of the corn leaf depolarization data from the biochar and control group.
Fig. 11
Fig. 11 Boxplot illustrates the distribution of the depolarization data from the two plots.

Tables (3)

Tables Icon

Table 1 effect of primary vein on the depolarization distribution of a corn leaf sample.

Tables Icon

Table 2 Date of sample collection and number of corn leaf samples.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E(t)= E x (t)+ E y (t),
E x ( t )= i ^ E 0x (t)cos[ ( kzωt )+ ε x (t) ],
E y ( t )= j ^ E 0y (t)cos[ ( kzωt )+ ε y (t) ],
I= E 0x 2 + E 0y 2 ,
Q= E 0x 2 E 0y 2 ,
U= 2 E 0x E 0y cosε ,
V= 2 E 0x E 0y sinε ;
I = I+Q  2 ,
I = IQ  2 .
δ= I   I .

Metrics