Abstract

We report on infrared supercontinuum (SC) generation through subsequent nonlinear propagation in concatenated step-index fluoride and As2Se3 fiber. These fibers were pumped by an all-fiber laser source based on an erbium amplifier followed by a thulium power amplifier. ZBLAN and InF3 fibers were compared for the concatenated scheme. The broadest SC produced was achieved by optimizing the length of the InF3 fiber. This arrangement allowed the generation of 200 mW infrared SC with high spectral flatness and spanning from 1.4 μm to 6.4 μm.

Full Article  |  PDF Article
OSA Recommended Articles
Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

Irnis Kubat, Christian Rosenberg Petersen, Uffe Visbech Møller, Angela Seddon, Trevor Benson, Laurent Brilland, David Méchin, Peter M. Moselund, and Ole Bang
Opt. Express 22(4) 3959-3967 (2014)

Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source

Jinmei Yao, Bin Zhang, Ke Yin, Linyong Yang, Jing Hou, and Qisheng Lu
Opt. Express 24(13) 15093-15100 (2016)

Two octaves mid-infrared supercontinuum generation in As2Se3 microwires

Alaa Al-kadry, Mohammed El Amraoui, Younès Messaddeq, and Martin Rochette
Opt. Express 22(25) 31131-31137 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref] [PubMed]
  2. S. Lambert-Girard, M. Allard, M. Piché, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54(7), 1647–1656 (2015).
    [Crossref]
  3. M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4 km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55(7), 1584–1602 (2016).
    [Crossref] [PubMed]
  4. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011).
    [Crossref]
  5. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
    [Crossref] [PubMed]
  6. J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High Power Supercontinuum Generation in Fluoride Fibers Pumped by 2 μm Pulses,” IEEE Photonics Technol. Lett. 26(2), 150–153 (2014).
    [Crossref]
  7. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4(4), 135–139 (2016).
    [Crossref]
  8. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm,” Opt. Lett. 42(12), 2334–2337 (2017).
    [Crossref] [PubMed]
  9. C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41(11), 2545–2548 (2016).
    [Crossref] [PubMed]
  10. F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
    [Crossref] [PubMed]
  11. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
    [Crossref] [PubMed]
  12. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
    [Crossref] [PubMed]
  13. F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. (accepted).
  14. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref] [PubMed]
  15. R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
    [Crossref] [PubMed]
  16. O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
    [Crossref] [PubMed]
  17. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  18. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  19. K. Yin, B. Zhang, J. Yao, Z. Cai, G. Liu, and J. Hou, “Toward High-Power All-Fiber 2-5 μm Supercontinuum Generation in Chalcogenide Step-Index Fiber,” J. Lightwave Technol. 35(20), 4535–4539 (2017).
    [Crossref]
  20. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]
  21. N. Tolstik, E. Sorokin, V. Kalashnikov, and I. Sorokina, “Soliton delivery of mid-IR femtosecond pulses with ZBLAN fiber,” Opt. Mater. Express 2(11), 1580–1587 (2012).
    [Crossref]
  22. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).
  23. X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
    [Crossref]
  24. F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
    [Crossref] [PubMed]
  25. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
    [Crossref] [PubMed]
  26. D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
    [Crossref]
  27. C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
    [Crossref] [PubMed]
  28. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amaraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  29. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
    [Crossref] [PubMed]
  30. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
    [Crossref]
  31. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [Crossref] [PubMed]
  32. www.lumerical.com .
  33. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  34. L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion in fluoride glasses,” Appl. Opt. 33(1), 50–56 (1994).
    [Crossref] [PubMed]
  35. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [Crossref]
  36. Y. Tang, F. Li, and J. Xu, “Watt-level supercontinuum generation in As2Se3 fibers pumped by a 2-micron random fiber laser,” Laser Phys. 26(5), 055402 (2016).
    [Crossref]
  37. K. Guo, R. A. Martinez, G. Plant, L. Maksymiuk, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, R. Bedford, R. Gibson, F. Chenard, S. Châtigny, and A. I. Ifarraguerri, “Generation of near-diffraction-limited, high-power supercontinuum from 1.57 μm to 12 μm with cascaded fluoride and chalcogenide fibers,” Appl. Opt. 57(10), 2519–2532 (2018).
    [Crossref] [PubMed]

2018 (2)

2017 (5)

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm,” Opt. Lett. 42(12), 2334–2337 (2017).
[Crossref] [PubMed]

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amaraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

K. Yin, B. Zhang, J. Yao, Z. Cai, G. Liu, and J. Hou, “Toward High-Power All-Fiber 2-5 μm Supercontinuum Generation in Chalcogenide Step-Index Fiber,” J. Lightwave Technol. 35(20), 4535–4539 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

2016 (11)

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

Y. Tang, F. Li, and J. Xu, “Watt-level supercontinuum generation in As2Se3 fibers pumped by a 2-micron random fiber laser,” Laser Phys. 26(5), 055402 (2016).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
[Crossref] [PubMed]

M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4 km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55(7), 1584–1602 (2016).
[Crossref] [PubMed]

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41(11), 2545–2548 (2016).
[Crossref] [PubMed]

Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4(4), 135–139 (2016).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (8)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High Power Supercontinuum Generation in Fluoride Fibers Pumped by 2 μm Pulses,” IEEE Photonics Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (1)

2007 (1)

2006 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

1994 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Absi, A.

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Agger, C.

Alamgir, I.

Alexander, V. V.

Allard, M.

Alvarez, O.

Amrani, F.

Antipov, S.

Babin, F.

Bailey, C.

Baker, H.

Bang, O.

Baxley, F.

Bedford, R.

Benson, T.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bernier, M.

Bérubé, N.

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. (accepted).

Brandon Shaw, L.

Brilland, L.

Cadier, B.

Cai, Z.

Carrée, J.-Y.

Chan, A.

Châtigny, S.

Chen, F.

Chenard, F.

Cheng, T.

Coen, S.

Couillard, J.-F.

Cozic, S.

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. (accepted).

Dai, S.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Daigle, J.-F.

Dantanarayana, H. G.

Delarosbil, J.-L.

Deng, D.

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
[Crossref] [PubMed]

Désévédavy, F.

Donelan, B.

Dudley, J. M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

Eichhorn, M.

El Amaraoui, M.

Fatome, J.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Fortin, J.

Fortin, V.

Freeman, M. J.

Fuerbach, A.

Furniss, D.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gadret, G.

Gan, F.

Gattass, R. R.

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

Gauthier, J.-C.

Genty, G.

Gibson, R.

Guo, F.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Guo, K.

Han, X.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Hou, J.

Hu, T.

Huang, Y.

Hudson, D. D.

Ifarraguerri, A.

Ifarraguerri, A. I.

Islam, M. N.

Jackson, S. D.

Janiszewski, B.

Jules, J.-C.

Kalashnikov, V.

Kanou, Y.

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

Ke, K.

Keiding, S. R.

Kibler, B.

Kieleck, C.

Kneis, C.

Kubat, I.

Kulkarni, O. P.

Kumar, M.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Lambert-Girard, S.

Légaré, F.

Leonard, J.

Li, F.

Y. Tang, F. Li, and J. Xu, “Watt-level supercontinuum generation in As2Se3 fibers pumped by a 2-micron random fiber laser,” Laser Phys. 26(5), 055402 (2016).
[Crossref]

Li, L.

Liu, G.

Liu, L.

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

Liu, M.

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Luo, B.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Maksymiuk, L.

Manek-Hönninger, I.

Martinez, R. A.

Mathieu, P.

Matsumoto, M.

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Maynard, R. L.

Mazé, G.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High Power Supercontinuum Generation in Fluoride Fibers Pumped by 2 μm Pulses,” IEEE Photonics Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

Méchin, D.

Messaddeq, Y.

Michalska, M.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High Power Supercontinuum Generation in Fluoride Fibers Pumped by 2 μm Pulses,” IEEE Photonics Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Møller, U.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Møller, U. V.

Moselund, P. M.

Mouawad, O.

Nagasaka, K.

Neelakandan, M.

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Ohishi, Y.

Ou, H.

Ouyang, D.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Petersen, C.

Petersen, C. R.

Peterson, L. M.

Piché, M.

Picot-Clémente, J.

Plant, G.

Poulain, M.

Poulain, S.

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. (accepted).

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Robichaud, L.-R.

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. (accepted).

Robin, T.

Rochette, M.

Ruan, S.

Rucci, M.

Sanghera, J. S.

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Schmidt, B. E.

Seddon, A.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Smektala, F.

Sojka, L.

Sorokin, E.

Sorokina, I.

Strutynski, C.

Sujecki, S.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Suzuki, T.

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Swiderski, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High Power Supercontinuum Generation in Fluoride Fibers Pumped by 2 μm Pulses,” IEEE Photonics Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

Tang, Y.

Y. Tang, F. Li, and J. Xu, “Watt-level supercontinuum generation in As2Se3 fibers pumped by a 2-micron random fiber laser,” Laser Phys. 26(5), 055402 (2016).
[Crossref]

Tang, Z.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Terry, F.

Terry, F. L.

Tezuka, H.

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

Théberge, F.

Thiré, N.

Thøgersen, J.

Tolstik, N.

Tuan, T. H.

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Vallée, R.

Vincent, D.

Wager, M.

Wang, J.

Wang, P.

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Wang, X.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Wang, Y.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Xu, D.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Xu, H.

Xu, J.

Y. Tang, F. Li, and J. Xu, “Watt-level supercontinuum generation in As2Se3 fibers pumped by a 2-micron random fiber laser,” Laser Phys. 26(5), 055402 (2016).
[Crossref]

Xu, P.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Xue, X.

Yan, P.

Yang, L.

Yao, J.

Yin, K.

You, C.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Zhang, B.

Zhang, L.

Zhang, P.

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

Zhao, J.

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zheng, Z.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (4)

IEEE Photonics Technol. Lett. (1)

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High Power Supercontinuum Generation in Fluoride Fibers Pumped by 2 μm Pulses,” IEEE Photonics Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

J. Cer. Soc. Jpn. (1)

D. Deng, L. Liu, T. H. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Cer. Soc. Jpn. 124, 103–105 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Opto-Elect. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Opto-Elect. Adv. Mater. 8, 2148–2155 (2006).

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Laser Phys. (1)

Y. Tang, F. Li, and J. Xu, “Watt-level supercontinuum generation in As2Se3 fibers pumped by a 2-micron random fiber laser,” Laser Phys. 26(5), 055402 (2016).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (3)

Opt. Fib. Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Fiber Technol. (1)

X. Han, C. You, S. Dai, P. Zhang, Y. Wang, F. Guo, D. Xu, B. Luo, P. Xu, and X. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Opt. Lett. (12)

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39(9), 2684–2687 (2014).
[Crossref] [PubMed]

R. R. Gattass, L. Brandon Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39(12), 3418–3420 (2014).
[Crossref] [PubMed]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
[Crossref] [PubMed]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref] [PubMed]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm,” Opt. Lett. 42(12), 2334–2337 (2017).
[Crossref] [PubMed]

F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref] [PubMed]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41(11), 2545–2548 (2016).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Optica (1)

Photon. Res. (1)

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Other (2)

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. (accepted).

www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the MIR SC fiber source. CMS, cladding mode stripper; DCF, double-clad fiber, SCF, single-clad fiber, ISO, 1.9 μm optical isolator, L, fiber length.
Fig. 2
Fig. 2 (a) Spectral distribution of the Tm amplifier (green dash-dot line) injected into fluoride fibers. The continuum from the 8-m ZBLAN or 8-m InF3 fibers are shown by the blue dashed and the red dashed lines, respectively. The output SC from the 9-m ChG fiber pumped by the continuum of the InF3 (red line) or by the continuum of the ZBLAN (blue line) fibers are also presented. (b) Measured spectral attenuation of the ZBLAN, InF3 and ChG fibers using standard cut-back procedure with a Fourier-transform infrared spectrometer. The measurements were smoothed over 50 nm bandwidth. (c) Calculated dispersion of the ZBLAN, InF3 and ChG fibers used.
Fig. 3
Fig. 3 (a) Spectral distribution at the output of the InF3 fiber for three different lengths of fiber. The laser power from the Tm amplifier and injected into the InF3 fibers was fixed to 2.03 W for the three cases presented and their output powers are indicated in parenthesis. (b) The output SC from the 9-m ChG fiber pumped by the continuum from three different lengths of InF3 fiber.
Fig. 4
Fig. 4 Spectral distribution at the output of the ChG fiber for three different ChG fiber lengths. The continuum laser power from the 8-m InF3 fiber injected into the three different ChG fiber lengths was fixed to 890 mW (spectral distribution shown by the red line).
Fig. 5
Fig. 5 (a) 20 dB spectral flatness and (b) average output power of the SC produced for different combinations of fluoride and ChG fibers as a function of their total lengths. The total fiber length on the horizontal axis corresponds to the sum of the fluoride and ChG fiber lengths.

Tables (2)

Tables Icon

Table 1 Characteristics of Chalcogenide Fiber-Based SC Laser Sourcesa

Tables Icon

Table 2 Fiber Parameters Summaryb