Abstract

This paper presents an all-optical difference engine (AODE) sensor for detecting the defects in printed electronics produced with roll-to-roll processes. The sensor is based on the principle of coherent optical subtraction and is able to achieve high-speed inspection by minimising data post-processing. A self-comparison inspection strategy is introduced to allow defect detection by comparing the printed features and patterns that have the same nominal dimensions. In addition, potential applications of the AODE sensor in an on-the-fly pass-or-reject production control scenario are presented. A prototype AODE sensor using a digital camera is developed and demonstrated by detecting defects on several industrial printed electrical circuitry samples. The camera can be easily replaced by a low-cost photodiode to realise high-speed all-optical information processing and inspection. The developed sensor is capable of inspecting areas of 4 mm width with a resolution of the order of several micrometres, and can be duplicated in parallel to inspect larger areas without significant cost.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Flexible, fast, and low-cost production process for polymer based diffractive optics

Maik Rahlves, Maher Rezem, Kristian Boroz, Sebastian Schlangen, Eduard Reithmeier, and Bernhard Roth
Opt. Express 23(3) 3614-3622 (2015)

Development of an optical defect inspection algorithm based on an active contour model for large steel roller surfaces

Jun Yang, Xuekun Li, Jirui Xu, Yuzhong Cao, Yun Zhang, Liping Wang, and Sheng Jiang
Appl. Opt. 57(10) 2490-2498 (2018)

On-line surface inspection using cylindrical lens–based spectral domain low-coherence interferometry

Dawei Tang, Feng Gao, and X. Jiang
Appl. Opt. 53(24) 5510-5516 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
    [Crossref]
  2. S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review,” IEEE Sens. J. 15(6), 3164–3185 (2015).
    [Crossref]
  3. D. O’Connor, A. J. Henning, B. Sherlock, R. K. Leach, J. Coupland, and C. L. Giusca, “Model-based defect detection on structured surfaces having optically unresolved features,” Appl. Opt. 54(30), 8872–8877 (2015).
    [Crossref] [PubMed]
  4. R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 4(6), 557–573 (1982).
    [Crossref] [PubMed]
  5. R. K. Leach, C. J. Jones, B. Sherlock, and A. Krysinski, “The high dynamic range surface metrology challenge,” in Proceedings of the 28th Annual Meeting of the American Society for Precision Engineering, B. R. Knapp, ed. (ASPE, 2013), pp. 149–152.
  6. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
    [Crossref] [PubMed]
  7. M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
    [Crossref]
  8. E. Alarousu, A. AlSaggaf, and G. E. Jabbour, “Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography,” Sci. Rep. 3(1), 1562 (2013).
    [Crossref] [PubMed]
  9. B. J. Thompson, “Coherent optical processing: a tutorial review,” Proc. SPIE 0052, 954174 (1974).
    [Crossref]
  10. A. Vander Lugt, “Coherent optical processing,” Proc. IEEE 62(10), 1300–1319 (1974).
    [Crossref]
  11. S. H. Lee, “Review of coherent optical processing,” Appl. Phys. (Berl.) 10(3), 203–217 (1976).
    [Crossref]
  12. S. H. Lee, ed., Optical Information Processing – Fundamentals, in Topics in Applied Physics (Springer Berlin Heidelberg, 1981).
  13. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2005).
  14. F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
    [Crossref] [PubMed]
  15. F. T. S. Yu and A. Tai, “Incoherent image addition and subtraction: a technique,” Appl. Opt. 18(15), 2705–2707 (1979).
    [Crossref] [PubMed]
  16. S. T. Wu and F. T. S. Yu, “Source encoding for image subtraction,” Opt. Lett. 6(9), 452–454 (1981).
    [Crossref] [PubMed]
  17. M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
    [Crossref]

2015 (3)

S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review,” IEEE Sens. J. 15(6), 3164–3185 (2015).
[Crossref]

D. O’Connor, A. J. Henning, B. Sherlock, R. K. Leach, J. Coupland, and C. L. Giusca, “Model-based defect detection on structured surfaces having optically unresolved features,” Appl. Opt. 54(30), 8872–8877 (2015).
[Crossref] [PubMed]

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

2014 (2)

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref] [PubMed]

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

2013 (1)

E. Alarousu, A. AlSaggaf, and G. E. Jabbour, “Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography,” Sci. Rep. 3(1), 1562 (2013).
[Crossref] [PubMed]

2004 (1)

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

1982 (1)

R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 4(6), 557–573 (1982).
[Crossref] [PubMed]

1981 (1)

1979 (1)

1976 (1)

S. H. Lee, “Review of coherent optical processing,” Appl. Phys. (Berl.) 10(3), 203–217 (1976).
[Crossref]

1974 (2)

B. J. Thompson, “Coherent optical processing: a tutorial review,” Proc. SPIE 0052, 954174 (1974).
[Crossref]

A. Vander Lugt, “Coherent optical processing,” Proc. IEEE 62(10), 1300–1319 (1974).
[Crossref]

1955 (1)

F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Alarousu, E.

E. Alarousu, A. AlSaggaf, and G. E. Jabbour, “Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography,” Sci. Rep. 3(1), 1562 (2013).
[Crossref] [PubMed]

AlSaggaf, A.

E. Alarousu, A. AlSaggaf, and G. E. Jabbour, “Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography,” Sci. Rep. 3(1), 1562 (2013).
[Crossref] [PubMed]

Blunt, L.

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

Chang, E. W.

Chin, R. T.

R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 4(6), 557–573 (1982).
[Crossref] [PubMed]

Coupland, J.

Dahiya, R. S.

S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review,” IEEE Sens. J. 15(6), 3164–3185 (2015).
[Crossref]

Dirscherl, K.

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

Elrawemi, M.

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

Fleming, L.

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

Gao, F.

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

Garnæs, J.

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

Giusca, C. L.

Hagberg, J.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Hansen, P.

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

Haring, T.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Harlow, C. A.

R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 4(6), 557–573 (1982).
[Crossref] [PubMed]

Heidenhans’l, N. A.

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

Heilmann, J.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Henning, A. J.

Jabbour, G. E.

E. Alarousu, A. AlSaggaf, and G. E. Jabbour, “Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography,” Sci. Rep. 3(1), 1562 (2013).
[Crossref] [PubMed]

Kallioinen, J.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Kettunen, I.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Khan, S.

S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review,” IEEE Sens. J. 15(6), 3164–3185 (2015).
[Crossref]

Kirillin, M.

Kololuoma, T.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Kopola, H.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Leach, R. K.

Lee, S. H.

S. H. Lee, “Review of coherent optical processing,” Appl. Phys. (Berl.) 10(3), 203–217 (1976).
[Crossref]

Lorenzelli, L.

S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review,” IEEE Sens. J. 15(6), 3164–3185 (2015).
[Crossref]

Madsen, M. H.

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

Mäkelä, T.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Mattsson, L.

Muhamedsalih, H.

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

O’Connor, D.

Sergeeva, E.

Sherlock, B.

Su, R.

Tai, A.

Thompson, B. J.

B. J. Thompson, “Coherent optical processing: a tutorial review,” Proc. SPIE 0052, 954174 (1974).
[Crossref]

Tuomikoski, M.

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Vander Lugt, A.

A. Vander Lugt, “Coherent optical processing,” Proc. IEEE 62(10), 1300–1319 (1974).
[Crossref]

Wu, S. T.

Yu, F. T. S.

Yun, S. H.

Zernike, F.

F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

S. H. Lee, “Review of coherent optical processing,” Appl. Phys. (Berl.) 10(3), 203–217 (1976).
[Crossref]

IEEE Sens. J. (1)

S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: A review,” IEEE Sens. J. 15(6), 3164–3185 (2015).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 4(6), 557–573 (1982).
[Crossref] [PubMed]

Int. J. Automation Techonlogy (1)

M. Elrawemi, L. Blunt, H. Muhamedsalih, F. Gao, and L. Fleming, “Implementation of in process surface metrology for R2R flexible PV barrier films,” Int. J. Automation Techonlogy 9(3), 312–321 (2015).
[Crossref]

J. Micromech. Microeng. (1)

M. H. Madsen, N. A. Heidenhans’l, P. Hansen, J. Garnæs, and K. Dirscherl, “Accounting for PDMS shrinkage when replicating structures,” J. Micromech. Microeng. 24(12), 127002 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

A. Vander Lugt, “Coherent optical processing,” Proc. IEEE 62(10), 1300–1319 (1974).
[Crossref]

Proc. SPIE (2)

B. J. Thompson, “Coherent optical processing: a tutorial review,” Proc. SPIE 0052, 954174 (1974).
[Crossref]

T. Kololuoma, M. Tuomikoski, T. Mäkelä, J. Heilmann, T. Haring, J. Kallioinen, J. Hagberg, I. Kettunen, and H. Kopola, “Towards roll-to-roll fabrication of electronics, optics and optoelectronics for smart and intelligent packaging,” Proc. SPIE 5363, 77–85 (2004).
[Crossref]

Sci. Rep. (1)

E. Alarousu, A. AlSaggaf, and G. E. Jabbour, “Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography,” Sci. Rep. 3(1), 1562 (2013).
[Crossref] [PubMed]

Science (1)

F. Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Other (3)

S. H. Lee, ed., Optical Information Processing – Fundamentals, in Topics in Applied Physics (Springer Berlin Heidelberg, 1981).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2005).

R. K. Leach, C. J. Jones, B. Sherlock, and A. Krysinski, “The high dynamic range surface metrology challenge,” in Proceedings of the 28th Annual Meeting of the American Society for Precision Engineering, B. R. Knapp, ed. (ASPE, 2013), pp. 149–152.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Roll-to-roll printed wiring backplane.
Fig. 2
Fig. 2 Illustration of coherent optical subtraction by spatial filtering. (a) Two identical optical transparencies and (b) the corresponding optical subtraction result; (c) defect present in one of the optical transparencies and (d) the corresponding optical subtraction result. The zeroth and ± 1 orders of diffraction are marked accordingly.
Fig. 3
Fig. 3 Illustration of self-comparison using nearby features as the reference. Red squares represent illuminated fields of view.
Fig. 4
Fig. 4 Test sample 1 (bottom left) with an incomplete pad and test sample 2 (bottom right) with a broken line due to ink transfer failure.
Fig. 5
Fig. 5 Test sample 3 with a defect caused by misalignment between overlapping layers.
Fig. 6
Fig. 6 Experimental setup of the prototype AODE sensor. Left: illumination; Right: AODE sensor.
Fig. 7
Fig. 7 Optical subtraction of test sample 1: (a) illustration of the reference image, the object image and the defect, (b) the difference image showing materials missing from the conducting pad, (c) the difference image when no defect is present, (d) binarised difference image showing the defect, and (e) binarised difference image when no defect is present.
Fig. 8
Fig. 8 Optical subtraction of test sample 2: (a) illustration of the reference image, the object image and the defect, (b) the difference image showing materials missing from the conducting line, (c) the difference image when no defect is present, (d) binarised difference image showing the defect, and (e) binarised difference image when no defect is present.
Fig. 9
Fig. 9 Optical subtraction of test sample 3: (a) illustration of the reference image, the object image and the defect, (b) the difference image showing misalignment of two patterns, (c) the difference image when no defect is present, (d) binarised difference image showing the defect, and (e) binarised difference image when no defect is present.

Tables (1)

Tables Icon

Table 1 Specifications of the optical components in the prototype AODE.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U( x 2 , y 2 )= G A ( x 2 , y 2 )exp[ j2π d λf x 2 ]+ G B ( x 2 , y 2 )exp[ j2π d λf x 2 ],
H( x 2 )=1+cos( 2π 1 Λ x 2 +ϕ ) = 1+ 1 2 [ exp( j2π 1 Λ x 2 +jϕ )+exp( j2π 1 Λ x 2 jϕ ) ],
U( x 2 )H( x 2 )= G A ( x 2 )exp( j2π d λf x 2 )+ G B ( x 2 )exp( j2π d λf x 2 ) + 1 2 G A ( x 2 )exp[ j2π( d λf 1 Λ ) x 2 ]exp( jϕ ) + 1 2 G B ( x 2 )exp[ j2π( d λf 1 Λ ) x 2 ]exp( jϕ ) + 1 2 G A ( x 2 )exp[ j2π( d λf + 1 Λ ) x 2 ]exp( jϕ ) + 1 2 G B ( x 2 )exp[ j2π( d λf + 1 Λ ) x 2 ]exp( jϕ ).
U( x 3 )=FT{ U( x 2 )H( x 2 ) } = g A ( x 3 +d)+ g B ( x 3 d) j 2 [ g A ( x 3 ) g B ( x 3 ) ] + j 2 g A ( x 3 +2d) j 2 g B ( x 3 2d).
I( x 3 , y 3 )= | U( x 3 , y 3 ) | 2 = 1 4 | g A ( x 3 , y 3 ) g B ( x 3 , y 3 ) | 2 .

Metrics