Abstract

An average 9 kilowatt-level direct-D2O-cooled side-pumped Nd:YAG multi-disk laser resonator at QCW mode with a pulse width of 250μs is presented, in which the straight-through geometry is adopted the oscillating laser propagates through 40 Nd:YAG thin disks and multiple cooling D2O flow layers in the Brewster angle. Much attention has been paid on the design of the gain module, including an analysis of the loss of the laser resonator and the design of the Nd:YAG thin disk. Experimentally, laser output with the highest pulse energy of more than 20 J is obtained at a repetition frequency of 10 Hz. At high repetition frequency, the average output power 9.8 kW with ηo-o = 26% and 9.1 kW with ηo-o = 21.8% are achieved in the stable resonator and unstable resonator, respectively, and in the corresponding beam quality factor βstable = 14.7 and βunstable = 9.5 respectively. To the best of our knowledge, this is the first demonstration of a 9 kilowatt-level direct-liquid-cooled Nd:YAG thin disk laser resonator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
7kW direct-liquid-cooled side-pumped Nd:YAG multi-disk laser resonator

Ke Wang, Bo Tu, Chunyan Jia, Jianli Shang, Xiangchao An, Yuan Liao, Zhi Xu, Jingwei Guo, Jiayu Yi, Yi Yu, Hua Su, Qingsong Gao, Xiaojun Wang, Wanfa Liu, and Kai Zhang
Opt. Express 24(13) 15012-15020 (2016)

Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator

Zhibin Ye, Chong Liu, Bo Tu, Ke Wang, Qingsong Gao, Chun Tang, and Zhen Cai
Opt. Express 24(2) 1758-1772 (2016)

3kW liquid–cooled elastically-supported Nd:YAG multi-slab CW laser resonator

Xing Fu, Peilin Li, Qiang Liu, and Mali Gong
Opt. Express 22(15) 18421-18432 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. O'Rourke, “Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congress,” Library of Congress Congressional Research Service, R41526 (2014).
  2. A. Mandl and D. Klimek, “Textron’s J-HPSSL 100 kW ThinZag laser program,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThH2.
    [Crossref]
  3. M. Bowers, J. Wisoff, and M. Herrmann, “Status of NIF laser and high power laser research at LLNL,” Proc. SPIE 10084, 1008403 (2017).
  4. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  5. H. Bruesselbach and D. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
    [Crossref]
  6. V. Sazegari, M. R. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49(36), 6910–6916 (2010).
    [Crossref] [PubMed]
  7. P. Avizonis, D. Bossert, and M. S. Curtin, “Physics of high performance Yb:YAG thin disk lasers.” OSA/CLEO/IQEC (2009).
  8. P. Li, X. Fu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
    [Crossref]
  9. P. Li, Q. Liu, and M. Gong, “Large-aperture end-pmped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
    [Crossref]
  10. R. Nie, J. She, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
    [Crossref]
  11. J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5–6), 549–558 (2006).
    [Crossref]
  12. H. Okada, H. Yoshida, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
    [Crossref]
  13. X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
    [Crossref] [PubMed]
  14. X. Fu, Q. Liu, P. Li, L. Huang, and M. Gong, “Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator,” Opt. Express 23(14), 18458–18470 (2015).
    [Crossref] [PubMed]
  15. Z. Ye, C. Liu, B. Tu, K. Wang, Q. Gao, C. Tang, and Z. Cai, “Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator,” Opt. Express 24(2), 1758–1772 (2016).
    [Crossref] [PubMed]
  16. K. Wang, B. Tu, C. Jia, J. Shang, X. An, Y. Liao, Z. Xu, J. Guo, J. Yi, Y. Yu, H. Su, Q. Gao, X. Wang, W. Liu, and K. Zhang, “7kW direct-liquid-cooled side-pumped Nd:YAG multi-disk laser resonator,” Opt. Express 24(13), 15012–15020 (2016).
    [Crossref] [PubMed]
  17. H. Fang and M. R. Perrone, “Numerical simulation of excimer lasers with unstable resonators,” IEEE J. Quantum Electron. 30(10), 2369–2375 (2002).
    [Crossref]
  18. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  19. H. Su, Y. Wei, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
    [Crossref]
  20. D. Kouznetsov, J. Bisson, J. Dong, and K. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. B 23(6), 1074–1082 (2006).
    [Crossref]
  21. Z. Y. Ji and X. F. Zhang, “Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), paper 10619.

2017 (1)

M. Bowers, J. Wisoff, and M. Herrmann, “Status of NIF laser and high power laser research at LLNL,” Proc. SPIE 10084, 1008403 (2017).

2016 (2)

2015 (2)

X. Fu, Q. Liu, P. Li, L. Huang, and M. Gong, “Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator,” Opt. Express 23(14), 18458–18470 (2015).
[Crossref] [PubMed]

H. Su, Y. Wei, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

2014 (2)

R. Nie, J. She, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
[Crossref] [PubMed]

2013 (2)

2010 (1)

2007 (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2006 (3)

D. Kouznetsov, J. Bisson, J. Dong, and K. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. B 23(6), 1074–1082 (2006).
[Crossref]

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5–6), 549–558 (2006).
[Crossref]

H. Okada, H. Yoshida, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

2005 (1)

H. Bruesselbach and D. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

2002 (1)

H. Fang and M. R. Perrone, “Numerical simulation of excimer lasers with unstable resonators,” IEEE J. Quantum Electron. 30(10), 2369–2375 (2002).
[Crossref]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

An, X.

Bisson, J.

Bowers, M.

M. Bowers, J. Wisoff, and M. Herrmann, “Status of NIF laser and high power laser research at LLNL,” Proc. SPIE 10084, 1008403 (2017).

Bruesselbach, H.

H. Bruesselbach and D. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

Cai, Z.

Dong, J.

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Fang, H.

H. Fang and M. R. Perrone, “Numerical simulation of excimer lasers with unstable resonators,” IEEE J. Quantum Electron. 30(10), 2369–2375 (2002).
[Crossref]

Fu, X.

Gao, Q.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Gong, M.

Guo, J.

Herrmann, M.

M. Bowers, J. Wisoff, and M. Herrmann, “Status of NIF laser and high power laser research at LLNL,” Proc. SPIE 10084, 1008403 (2017).

Huang, L.

Jafari, A. K.

Ji, Z. Y.

Z. Y. Ji and X. F. Zhang, “Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), paper 10619.

Jia, C.

Kouznetsov, D.

Li, P.

Liao, Y.

Liu, C.

Liu, Q.

Liu, W.

Milani, M. R.

Min, J. C.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5–6), 549–558 (2006).
[Crossref]

Nakatsuka, M.

H. Okada, H. Yoshida, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Nie, R.

R. Nie, J. She, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Okada, H.

H. Okada, H. Yoshida, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Peng, B.

R. Nie, J. She, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Perrone, M. R.

H. Fang and M. R. Perrone, “Numerical simulation of excimer lasers with unstable resonators,” IEEE J. Quantum Electron. 30(10), 2369–2375 (2002).
[Crossref]

Sazegari, V.

Shang, J.

She, J.

R. Nie, J. She, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Song, Y. Z.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5–6), 549–558 (2006).
[Crossref]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Su, H.

Sumida, D.

H. Bruesselbach and D. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

Tang, C.

Tu, B.

Ueda, K.

Wang, J. R.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5–6), 549–558 (2006).
[Crossref]

Wang, K.

Wang, X.

Wei, Y.

H. Su, Y. Wei, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

Wisoff, J.

M. Bowers, J. Wisoff, and M. Herrmann, “Status of NIF laser and high power laser research at LLNL,” Proc. SPIE 10084, 1008403 (2017).

Xu, Z.

Ye, Z.

Yi, J.

Yoshida, H.

H. Okada, H. Yoshida, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Yu, Y.

Zhang, K.

Zhang, X. F.

Z. Y. Ji and X. F. Zhang, “Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), paper 10619.

Appl. Opt. (1)

Appl. Therm. Eng. (1)

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5–6), 549–558 (2006).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

H. Fang and M. R. Perrone, “Numerical simulation of excimer lasers with unstable resonators,” IEEE J. Quantum Electron. 30(10), 2369–2375 (2002).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

H. Bruesselbach and D. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

R. Nie, J. She, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Opt. Commun. (2)

H. Su, Y. Wei, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

H. Okada, H. Yoshida, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

M. Bowers, J. Wisoff, and M. Herrmann, “Status of NIF laser and high power laser research at LLNL,” Proc. SPIE 10084, 1008403 (2017).

Other (4)

P. Avizonis, D. Bossert, and M. S. Curtin, “Physics of high performance Yb:YAG thin disk lasers.” OSA/CLEO/IQEC (2009).

Z. Y. Ji and X. F. Zhang, “Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018), paper 10619.

R. O'Rourke, “Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congress,” Library of Congress Congressional Research Service, R41526 (2014).

A. Mandl and D. Klimek, “Textron’s J-HPSSL 100 kW ThinZag laser program,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThH2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of the direcct-D2O-cooled side-pumped Nd:YAG thin disk laser resonator. (a) The configuration of the unstable laser resonator. PM, pump module; LDS, laser diode stack; CLG, cylindrical lenses group; M1, polarization beam combiners; GM, gain module; M2, high reflector; SM, scraper mirror, including square loop high reflector and a hole in the middle; M3, convex Mirror. (b) The schematic of the stable laser resonator. M4, high reflector; OC, output coupler.
Fig. 2
Fig. 2 The limits of heat generation rate as a fuction of the thickness of disk, the inset shows the the relevant convective heat-transfer coefficient with different velocity of flow which is simulated by Comsol.
Fig. 3
Fig. 3 The round-trip loss of the laser resonator varies with the number of disks. The inset (a) shows the loss lt caused by the Brewster angle variation in different temperature, the inset (b) shows the loss of single disk versus the angle deviation, and the inset (c) shows the main depolarization distribution of s polarization light.
Fig. 4
Fig. 4 (a) The variation of simulation output power and size of a Nd:YAG disk with the number of disks. (b) The output power and the optical-optical efficiency with different pump power and reflectivity of output coupler.
Fig. 5
Fig. 5 (a) The thermal aberration caused by side-pumping. (b) The influence and compensation of cylindrical defocus in unstable resonator.
Fig. 6
Fig. 6 The thermal aberration caused by cooling flow field and the self-compensation of tilt aberration. (a) The OPD with same flow direction; (b) The OPD with opposite flow direction; (c) The schematic diagram of the tilt self-compensation.
Fig. 7
Fig. 7 (a) Output pulse energy and optical-optical efficiency as a function of the pumping energy at 10 Hz, the inset is the picture of the laser system. (b) Average output power with different pumping power, the insets (c) and (d) show the near-field intensity distributions of the laser beam with the maximum output power in stable resonator and stable resonator respectively.
Fig. 8
Fig. 8 The laser far-field spot patterns of the unstable cavity (a) and stable cavity (b).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ max = fE 1ν Q max ( 1 ) d 2 12k Q max ( 1 ) = 12k( 1ν ) fE d 2 σ max
ΔT= d Q max ( 2 ) 2 h c Q max ( 2 ) = 2 h c ΔT d
L=1 [ ( 1 l sa )( 1 l la )( 1 l dp ) ] 2N [ ( 1 l a )( 1 l t ) ] 4N ( 1 l o )
P in η h α Nad Q max a 3 P in η h 2 h c ΔTNb
g 0 = P in η abs τ σ e h ν P Nabd
I S g 0 I S +I = ln[ R( 1L ) ] 2Nd
P out =( 2 P in τ σ e η abs h ν P ln[ R( 1L ) ] + 3 P in η h 2 h c ΔTN ) I S ( 1R 1+R )
OP D s ( z ) 3I η h d 2b h c [ exp( 3z b 3 2 )+exp( 3z b 3 2 ) ]