Abstract

In this study, a multi-layer metal-oxide-semiconductor capacitor (MLMOSC) polarization insensitive modulator is proposed. The design is validated by numerical simulation with commercial software LUMERICAL SOLUTION. Based on the epsilon-near-zero (ENZ) effect of indium tin oxide (ITO), the device manages to uniformly modulate both the transverse electric (TE) and the transverse magnetic (TM) modes. With a 20μm-long double-layer metal-oxide-semiconductor capacitor (DLMOSC) polarization insensitive modulator, in which two metal-oxide-semiconductor (MOS) structures are formed by the n-doped Si/HfO2/ITO/HfO2/ n-doped Si stack, the extinction ratios (ERs) of both the TE and the TM modes can be over 20dB. The polarization dependent losses of the device can be as low as 0.05dB for the “OFF” state and 0.004dB for the “ON” state. Within 1dB polarization dependent loss, the device can operate with over 20dB ERs at the S, C, and L bands. The polarization insensitive modulator offers various merits including ultra-compact size, broadband spectrum, and complementary metal oxide semiconductor (CMOS) compatibility.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material

Alok P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and Mark L. Brongersma
Opt. Express 21(22) 26387-26397 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s Per-Channel WDM Transmission on the 50 GHz ITU-T Grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
    [Crossref]
  3. D. Dai, “Silicon Nanophotonic Integrated Devices for On-Chip Multiplexing and Switching,” J. Lightwave Technol. 35(4), 572–587 (2017).
    [Crossref]
  4. Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
    [Crossref]
  5. S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
    [Crossref]
  6. R. A. Steinberg, T. G. Giallorenzi, and R. G. Priest, “Polarization-insensitive integrated-optical switches: na new electrode design,” Appl. Opt. 16(8), 2166–2170 (1977).
    [Crossref] [PubMed]
  7. A. Kaplan and S. Ruschin, “Layout for polarization insensitive modulation in LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 83–87 (2000).
    [Crossref]
  8. C. W. Hsu, C. F. Huang, W. S. Tsai, and W.-S. Wang, “Lithium Niobate Polarization-Independent Modulator Using Integrated Polarization Splitters and Mode Converters,” J. Lightwave Technol. 35(9), 1663–1669 (2017).
    [Crossref]
  9. W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
    [Crossref]
  10. S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
    [Crossref]
  11. X. Peng, E. Li, and R. Hao, “Graphene-aluminum oxide metamaterial for a compact polarization-independent modulator,” in Advanced Materials and Processes for RF and THz Applications (IMWS-AMP, 2015), Microw. Workshop Series Adv. Mater. Processes RF THz Appl., paper 1–3.
  12. M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
    [Crossref]
  13. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
    [Crossref]
  14. C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).
  15. U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).
  16. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  17. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  18. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  19. V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  20. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
    [Crossref] [PubMed]
  21. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
    [Crossref] [PubMed]
  22. J. Baek, J. B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
    [Crossref] [PubMed]
  23. Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
    [Crossref]
  24. G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-Gigabit Operation of a Compact, Broadband Modulator Based on ENZ Confinement in Indium Oxide,” in Optical Communication Conference (OFC, 2017), paper Th3l.3.
    [Crossref]
  25. C. Lin and A. S. Helmy, “Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics,” Sci. Rep. 5(1), 12313 (2015).
    [Crossref] [PubMed]
  26. M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
    [Crossref]
  27. P. Chang, C. Lin, and A. S. Helmy, “Polarization Engineering in Nanoscale Waveguides Using Lossless Media,” J. Lightwave Technol. 34(3), 952–960 (2016).
    [Crossref]
  28. L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
    [Crossref] [PubMed]
  29. P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
    [Crossref] [PubMed]
  30. G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
    [Crossref]
  31. V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
    [Crossref]
  32. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface Plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839–841 (2009).
    [Crossref] [PubMed]
  33. J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide,” J. Phys. Condens. Matter 2(28), 6207–6221 (1990).
    [Crossref]
  34. Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
    [Crossref] [PubMed]
  35. A. V. Krasavin and A. V. Zayats, “Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
    [Crossref] [PubMed]
  36. U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
    [Crossref]

2018 (1)

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

2017 (6)

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

D. Dai, “Silicon Nanophotonic Integrated Devices for On-Chip Multiplexing and Switching,” J. Lightwave Technol. 35(4), 572–587 (2017).
[Crossref]

C. W. Hsu, C. F. Huang, W. S. Tsai, and W.-S. Wang, “Lithium Niobate Polarization-Independent Modulator Using Integrated Polarization Splitters and Mode Converters,” J. Lightwave Technol. 35(9), 1663–1669 (2017).
[Crossref]

2016 (4)

P. Chang, C. Lin, and A. S. Helmy, “Polarization Engineering in Nanoscale Waveguides Using Lossless Media,” J. Lightwave Technol. 34(3), 952–960 (2016).
[Crossref]

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

2015 (5)

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

J. Baek, J. B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
[Crossref] [PubMed]

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Lin and A. S. Helmy, “Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics,” Sci. Rep. 5(1), 12313 (2015).
[Crossref] [PubMed]

2014 (3)

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (4)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s Per-Channel WDM Transmission on the 50 GHz ITU-T Grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

2010 (2)

G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

2009 (1)

2004 (1)

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

2000 (1)

A. Kaplan and S. Ruschin, “Layout for polarization insensitive modulation in LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 83–87 (2000).
[Crossref]

1995 (1)

S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
[Crossref]

1990 (1)

J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide,” J. Phys. Condens. Matter 2(28), 6207–6221 (1990).
[Crossref]

1978 (1)

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
[Crossref]

1977 (1)

Adkins, C. J.

J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide,” J. Phys. Condens. Matter 2(28), 6207–6221 (1990).
[Crossref]

Atamny, F.

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Atwater, H. A.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Babicheva, V. E.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Baek, J.

Beccherelli, R.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

Bellingham, J. R.

J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide,” J. Phys. Condens. Matter 2(28), 6207–6221 (1990).
[Crossref]

Betz, U.

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Boltasseva, A.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Borel, P. I.

Brongersma, M. L.

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Burns, W. K.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
[Crossref]

Carlson, K.

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Chang, P.

Chelles, S.

S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
[Crossref]

Chen, D.

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

Chen, Q.

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

Dai, D.

Danz, N.

Descrovi, E.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dominici, L.

Edwards, P. P.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

Escolá, M. F.

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Ferreira, R.

S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
[Crossref]

Gardes, F. Y.

G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Giallorenzi, T. G.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
[Crossref]

R. A. Steinberg, T. G. Giallorenzi, and R. G. Priest, “Polarization-insensitive integrated-optical switches: na new electrode design,” Appl. Opt. 16(8), 2166–2170 (1977).
[Crossref] [PubMed]

Guo, Q.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

Hafner, C.

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Han, S.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Harmand, J. C.

S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
[Crossref]

Helmy, A. S.

P. Chang, C. Lin, and A. S. Helmy, “Polarization Engineering in Nanoscale Waveguides Using Lossless Media,” J. Lightwave Technol. 34(3), 952–960 (2016).
[Crossref]

C. Lin and A. S. Helmy, “Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics,” Sci. Rep. 5(1), 12313 (2015).
[Crossref] [PubMed]

Hoessbacher, C.

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Hsu, C. W.

Huang, C. F.

Huang, Y. W.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Isaac, R.

Jha, A.

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Jin, L.

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

Jones, M. O.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

Kang, J. H.

Kaplan, A.

A. Kaplan and S. Ruschin, “Layout for polarization insensitive modulation in LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 83–87 (2000).
[Crossref]

Khan, S.

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Koch, U.

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Kriezis, E. E.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

Kwong, D. L.

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lavrinenko, A. V.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Lee, H. W. H.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Leuthold, J.

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Li, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Liang, D.

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

Liang, L.

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

Lin, C.

P. Chang, C. Lin, and A. S. Helmy, “Polarization Engineering in Nanoscale Waveguides Using Lossless Media,” J. Lightwave Technol. 34(3), 952–960 (2016).
[Crossref]

C. Lin and A. S. Helmy, “Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics,” Sci. Rep. 5(1), 12313 (2015).
[Crossref] [PubMed]

Liu, K.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Liu, X.

Liu, Y.

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

Lo, G. Q.

Lu, R.

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

Lu, R.-G.

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Ma, R.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Ma, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Magill, P.

Marthy, J.

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Mashanovich, F.

G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Menchini, F.

Michelotti, F.

Moeller, R. P.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
[Crossref]

Morgan, D. V.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Nelson, L. E.

Niegeman, J.

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Olsson, M. K.

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Pala, R. A.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Pan, S.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Park, J.

Peckham, D. W.

Perks, R. M.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Phillips, W. A.

J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide,” J. Phys. Condens. Matter 2(28), 6207–6221 (1990).
[Crossref]

Pitilakis, A.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

Porch, A.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

Priest, R. G.

Reed, G. T.

G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ruschin, S.

A. Kaplan and S. Ruschin, “Layout for polarization insensitive modulation in LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 83–87 (2000).
[Crossref]

Shah, M. K.

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Simsek, E.

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Sinatkas, G.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

Sokhoyan, R.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Sorger, V. J.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Steinberg, R. A.

Sun, Y.

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

Thomson, D. J.

G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Thyagarajan, K.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Tsai, D. P.

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Tsai, W. S.

Vasudev, A. P.

Voisin, P.

S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
[Crossref]

Wang, W.-S.

Wen, L.

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

West, E. J.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
[Crossref]

Yang, F.

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

Ye, C.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

Ye, S.

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Ye, S.-W.

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

You, J. B.

Yu, K.

Yuan, F.

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Zhang, F.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

Zhang, X.

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zhang, Y.

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Zhou, P.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

Zhou, X.

Zhu, B.

Zhu, S.

Zografopoulos, D. C.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

Zou, X.

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

Zou, X.-H.

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Chelles, R. Ferreira, P. Voisin, and J. C. Harmand, “High performance polarization insensitive electroabsorption modulator based on strained GaInAs-AlInAs multiple quantum wells,” Appl. Phys. Lett. 67(2), 247–249 (1995).
[Crossref]

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, and E. J. West, “Interferometric waveguide modulator with polarization independent,” Appl. Phys. Lett. 33(11), 944–947 (1978).
[Crossref]

Dalton Trans. (1)

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans. 19(19), 2995–3002 (2004).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

M. K. Shah, S. Ye, X. Zou, F. Yuan, A. Jha, Y. Zhang, R.-G. Lu, and Y. Liu, “Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305 (2017).
[Crossref]

C. Ye, S. Khan, Z. Li, E. Simsek, and V. J. Sorger, “λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400310 (2014).

A. Kaplan and S. Ruschin, “Layout for polarization insensitive modulation in LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 83–87 (2000).
[Crossref]

IEEE Photonics J. (2)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

U. Koch, C. Hoessbacher, J. Niegeman, C. Hafner, and J. Leuthold, “Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

S.-W. Ye, D. Liang, R.-G. Lu, M. K. Shah, X.-H. Zou, F. Yuan, F. Yang, and Y. Liu, “Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect,” IEEE Photonics Technol. Lett. 29(1), 23–26 (2017).
[Crossref]

J. Appl. Phys. (1)

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2016).
[Crossref]

J. Lightwave Technol. (4)

J. Phys. Condens. Matter (1)

J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Electrical and optical properties of amorphous indium oxide,” J. Phys. Condens. Matter 2(28), 6207–6221 (1990).
[Crossref]

Nano Lett. (3)

Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Nanophotonics (3)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

L. Jin, L. Wen, L. Liang, Q. Chen, and Y. Sun, “Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide,” Nanoscale Res. Lett. 13(1), 39 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

G. T. Reed, F. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

M. K. Shah, R. Lu, X. Zhang, Y. Zhang, D. Chen, and Y. Liu, “ITO-assisted fiber-optic polarization-insensitive electro-absorption optical modulator,” Opt. Fiber Technol. 36, 422–427 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Lin and A. S. Helmy, “Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics,” Sci. Rep. 5(1), 12313 (2015).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surf. Coat. Tech. 200(20–21), 5751–5759 (2015).

Other (2)

X. Peng, E. Li, and R. Hao, “Graphene-aluminum oxide metamaterial for a compact polarization-independent modulator,” in Advanced Materials and Processes for RF and THz Applications (IMWS-AMP, 2015), Microw. Workshop Series Adv. Mater. Processes RF THz Appl., paper 1–3.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-Gigabit Operation of a Compact, Broadband Modulator Based on ENZ Confinement in Indium Oxide,” in Optical Communication Conference (OFC, 2017), paper Th3l.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed MLMOSC polarization insensitive modulator. (b) 3D view of the SLMOSC polarization insensitive modulator and the biasing circuitry. (c) Cross section of the SLMOSC polarization insensitive modulator. The rib width is w = 270nm. The rib height is h = 190nm. The thickness of the slab and HfO2 are tslab = 30nm, and tHfO2 = 5nm, respectively. (d) Cross section and the electrode configuration of the DLMOSC polarization insensitive modulator. The rib width is w = 270nm. The total width is W = 600nm. The rib height is h = 190nm. The total height is H = 300nm.The thickness of the slab, ITO and HfO2 are tslab = 30nm, tITO = 5nm, and tHfO2 = 5nm, respectively.
Fig. 2
Fig. 2 (a) The real and the imaginary parts of ITO permittivity as a function of carrier concentration, n, at 1.55μm. (b) The carrier concentration distribution in ITO and Si layers at different applied voltage. The magnifying distribution at ITO/HfO2 surface is shown by the inset.
Fig. 3
Fig. 3 The electric field distribution for the TE mode at V = 0V (a), at V = 5V (b). The red lines in (a) and (b) show the |Ex| along x-axis. The electric field distribution for the TM mode at V = 0V (c), at V = 5V (d). The red lines in (c) and (d) show the |Ey| along y-axis.
Fig. 4
Fig. 4 (a) The TE and the TM modes loss and polarization dependent loss at different voltage. (b) The real part of effective mode index N, and the variations of N, △N at different voltage. Here △N = N (V)-N (V = 0). Here N (V) represents N at different voltage V.
Fig. 5
Fig. 5 The electric field distribution for TE mode at V = 0V (a), at V = 5V (b). The red lines in (a) and (b) show the |Ex| along x-axis. The electric field distribution for TM mode at V = 0V (c), at V = 5V (d). The red lines in (c) and (d) show the |Ey| along y-axis. The yellow dashed boxes in (b) and (d) show the zoomed-in area, and the extra red lines are the zoomed-in profile of the two close spikes.
Fig. 6
Fig. 6 (a) The TE and the TM modes loss and polarization dependent loss at different voltage for the DLMOSC modulator. (b) The real part of effective mode index N, and the variations of N, △N at different voltage for the improved modulator. Here △N = N(V)-N(V = 0). Here N(V) represents N at different voltage.
Fig. 7
Fig. 7 The TE mode propagating profile along the 20μm-long DLMOSC polarization insensitive EOM for X-cut at V = 0V (a), V = 4.75V (b), when the TE mode light is input. The TM mode propagating profile along the 20μm-long DLMOSC EOM for Y-cut at V = 0V (c), V = 4.75V (d), when the TM mode light is input.
Fig. 8
Fig. 8 The TE and the TM mode loss at different wavelengths. The arrow direction shows the decrease of the wavelength.
Fig. 9
Fig. 9 (a) The ER and the IL of the TE and the TM modes as a function of rib height, h. (b) The ER and the IL of the TE and the TM modes as a function of rib width, w.
Fig. 10
Fig. 10 The influence of ITO thickness on the ER and the IL for the ITO-inserted polarization insensitive modulator. The ER is the difference between the loss at 4.75V and 0V.
Fig. 11
Fig. 11 (a) The influence of total height H on ER and IL for the ITO-inserted polarization insensitive modulator. ER is the difference between the loss at 4.75V and 0V. (b) The influence of total width W on ER and IL for the ITO-inserted polarization insensitive modulator. ER is the difference between the loss at 4.75V and 0V.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε r = ε ω p 2 ω 2 + γ 2 +i ω p 2 γ ( ω 2 + γ 2 )ω , ω p 2 = n e 2 ε 0 m * .
| E nITO |= | ε Hf O 2 E nHf O 2 | | ε ITO | .
α=10| log( e 4π λ Im( n eff ) ) | ( dB/μm ).
α PDL =| α TE α TM | ( dB/μm ).
f 3dB = 1 2πRC .