Abstract

High power LP11 mode supercontinuum is generated from 25/250 large mode area (LMA) fiber. A mechanical long period grating (LPG) is utilized to control the transverse modes in the LMA fiber to realize the LP11 mode supercontinuum generation in a master oscillator power amplifier (MOPA) configuration. The generated LP11 mode supercontinuum covers the spectral range from ~900 nm to ~2100 nm with a −30-dB spectral width of ~1200 nm and 50% optical to optical conversion efficiency. The seed laser produces picosecond pulses with 1 MHz repetition rate at the wavelength of 1060 nm. After multi-stage amplification in ytterbium-doped fibers, the average output power is scaled to 54.51 W and 56.79 W respectively for LP11 and LP01 mode, accompanying supercontinuum generation. Obvious difference of supercontinuum generation between the LP01 and LP11 modes is experimentally observed due to the different dispersion characters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power transverse-mode-switchable all-fiber picosecond MOPA

Tong Liu, Shengping Chen, Xue Qi, and Jing Hou
Opt. Express 24(24) 27821-27827 (2016)

High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016  nm

Xue Qi, Shengping Chen, Zhihong Li, Tong Liu, Yang Ou, Nan Wang, and Jing Hou
Opt. Lett. 43(5) 1019-1022 (2018)

High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier

Rui Song, Jing Hou, Shengping Chen, Weiqiang Yang, and Qisheng Lu
Opt. Lett. 37(9) 1529-1531 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Alfano and S. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [Crossref]
  2. R. Alfano and S. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
    [Crossref]
  3. P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
    [Crossref]
  4. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10(7), 341–348 (2002).
    [Crossref] [PubMed]
  5. N. G. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999).
    [Crossref] [PubMed]
  6. E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
    [Crossref]
  7. Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks, “More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing,” Opt. Lett. 34(14), 2240–2242 (2009).
    [Crossref] [PubMed]
  8. H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
    [Crossref]
  9. X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
    [Crossref] [PubMed]
  10. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16(8), 5954–5962 (2008).
    [Crossref] [PubMed]
  11. R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
    [Crossref]
  12. B. Zhang, A. Jin, P. Ma, S. Chen, and J. Hou, “High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier,” Opt. Express 23(22), 28683–28690 (2015).
    [Crossref] [PubMed]
  13. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
    [Crossref] [PubMed]
  14. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007).
    [Crossref] [PubMed]
  15. A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, and G. Millot, “Seeded intermodal four-wave mixing in a highly multimode fiber,” J. Opt. Soc. Am. B 36(2), 295–301 (2018).
    [Crossref]
  16. T. Chaipiboonwong, P. Horak, J. D. Mills, and W. S. Brocklesby, “Numerical study of nonlinear interactions in a multimode waveguide,” Opt. Express 15(14), 9040–9047 (2007).
    [Crossref] [PubMed]
  17. R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfarges-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélémy, G. Millot, S. Wabnitz, V. Couderc, and V. Couderc, “Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber,” Opt. Express 25(5), 4783–4792 (2017).
    [Crossref] [PubMed]
  18. Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. Lett. 41(16), 3675–3678 (2016).
    [Crossref] [PubMed]
  19. S. R. Petersen, T. T. Alkeskjold, C. B. Olausson, and J. Lægsgaard, “Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers,” Opt. Express 23(5), 5954–5971 (2015).
    [Crossref] [PubMed]
  20. R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, and G. Millot, “Intermodal modulational instability in graded-index multimode optical fibers,” Opt. Lett. 42(17), 3419–3422 (2017).
    [Crossref] [PubMed]
  21. Y. Xiao, R. J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22(26), 32039–32059 (2014).
    [Crossref] [PubMed]
  22. X. Zhong and A. Xiang, “Effects of group-velocity mismatch and cubic-quintic nonlinearity on cross-phase modulation instability in optical fibers,” Chin. Opt. Lett. 5(9), 534–537 (2007).
  23. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16(3), 2147–2152 (2008).
    [Crossref] [PubMed]
  24. I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
    [Crossref]
  25. T. Liu, S. Chen, X. Qi, and J. Hou, “High-power transverse-mode-switchable all-fiber picosecond MOPA,” Opt. Express 24(24), 27821–27827 (2016).
    [Crossref] [PubMed]

2018 (2)

A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, and G. Millot, “Seeded intermodal four-wave mixing in a highly multimode fiber,” J. Opt. Soc. Am. B 36(2), 295–301 (2018).
[Crossref]

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (2)

2014 (1)

2013 (2)

H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

2012 (2)

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2007 (3)

2004 (2)

P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

2002 (1)

1999 (1)

1970 (2)

R. Alfano and S. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

R. Alfano and S. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Agrawal, G. P.

Alfano, R.

R. Alfano and S. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

R. Alfano and S. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Alkeskjold, T. T.

Auguste, J. L.

Barthélémy, A.

Bendahmane, A.

Bennett, P. J.

Birks, T. A.

Blandin, P.

Brocklesby, W. S.

Broderick, N. G.

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Chaipiboonwong, T.

Chamorovsky, Y. K.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Chen, H.

H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

Chen, S.

Chen, S.-P.

R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

Chen, Z.

H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks, “More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing,” Opt. Lett. 34(14), 2240–2242 (2009).
[Crossref] [PubMed]

Cherif, R.

Christodoulides, D. N.

Couderc, V.

Cumberland, B. A.

Degiorgio, V.

Desfarges-Berthelemot, A.

Desgroseilliers, M.

Dianov, E. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Druon, F.

Dupiol, R.

Essiambre, R. J.

Fabert, M.

Fatome, J.

Frolov, A. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Georges, P.

Giles, D.

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Giles, I.

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Guenard, R.

Hanna, M.

Horak, P.

Hou, J.

Ivanov, G. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Jin, A.

Kermene, V.

Krupa, K.

Lacroix, S.

Lægsgaard, J.

Leproux, P.

Lesvigne, C.

Li, Z.

Lin, H.-J.

P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
[Crossref]

-Lin. Du, C.

P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
[Crossref]

Liu, T.

Liu, Z.

Lu, Q.

H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Lu, Q.-S.

R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Ma, P.

Millot, G.

Mills, J. D.

Modotto, D.

A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, and G. Millot, “Seeded intermodal four-wave mixing in a highly multimode fiber,” J. Opt. Soc. Am. B 36(2), 295–301 (2018).
[Crossref]

Monro, T. M.

Mortensen, N. A.

Mumtaz, S.

Obeysekara, A.

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Olausson, C. B.

Ou, Y.

Petersen, S. R.

Poletti, F.

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Popov, S. V.

Qi, X.

Richardson, D.

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Richardson, D. J.

Rongsheng, C.

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

Ruan, S.-C.

P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
[Crossref]

Ryf, R.

Shapiro, S.

R. Alfano and S. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

R. Alfano and S. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Song, R.

R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Sylvestre, T.

A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, and G. Millot, “Seeded intermodal four-wave mixing in a highly multimode fiber,” J. Opt. Soc. Am. B 36(2), 295–301 (2018).
[Crossref]

Tartara, L.

Taylor, J. R.

Tonello, A.

Travers, J. C.

Tulino, A. M.

Vorobjev, I. L.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Wabnitz, S.

Wadsworth, W. J.

Wang, N.

Wise, F. W.

Wright, L. G.

Xiang, A.

Xiao, L. M.

Xiao, Y.

Xiong, C.

Yan, P.-G.

P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
[Crossref]

Yang, W.

Yang, W.-Q.

R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Zghal, M.

Zhang, B.

Zhong, X.

Appl. Phys. Express (1)

H. Chen, Z. Chen, S.-P. Chen, J. Hou, and Q. Lu, “Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

P.-G. Yan, S.-C. Ruan, H.-J. Lin, and C. -Lin. Du, “Supercontinuum Generation in a Photonic Crystal Fibre,” Chin. Phys. Lett. 21(6), 1093–1095 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

I. Giles, A. Obeysekara, C. Rongsheng, D. Giles, F. Poletti, and D. Richardson, “Fiber LPG Mode Converters and Mode Selection Technique for Multimode SDM,” IEEE Photonics Technol. Lett. 24(21), 1922–1925 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, and G. Millot, “Seeded intermodal four-wave mixing in a highly multimode fiber,” J. Opt. Soc. Am. B 36(2), 295–301 (2018).
[Crossref]

Laser Phys. Lett. (1)

R. Song, J. Hou, S.-P. Chen, W.-Q. Yang, T. Liu, and Q.-S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Opt. Express (9)

B. Zhang, A. Jin, P. Ma, S. Chen, and J. Hou, “High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier,” Opt. Express 23(22), 28683–28690 (2015).
[Crossref] [PubMed]

T. Chaipiboonwong, P. Horak, J. D. Mills, and W. S. Brocklesby, “Numerical study of nonlinear interactions in a multimode waveguide,” Opt. Express 15(14), 9040–9047 (2007).
[Crossref] [PubMed]

R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfarges-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélémy, G. Millot, S. Wabnitz, V. Couderc, and V. Couderc, “Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber,” Opt. Express 25(5), 4783–4792 (2017).
[Crossref] [PubMed]

N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10(7), 341–348 (2002).
[Crossref] [PubMed]

T. Liu, S. Chen, X. Qi, and J. Hou, “High-power transverse-mode-switchable all-fiber picosecond MOPA,” Opt. Express 24(24), 27821–27827 (2016).
[Crossref] [PubMed]

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16(3), 2147–2152 (2008).
[Crossref] [PubMed]

S. R. Petersen, T. T. Alkeskjold, C. B. Olausson, and J. Lægsgaard, “Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers,” Opt. Express 23(5), 5954–5971 (2015).
[Crossref] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16(8), 5954–5962 (2008).
[Crossref] [PubMed]

Y. Xiao, R. J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22(26), 32039–32059 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, and G. Millot, “Intermodal modulational instability in graded-index multimode optical fibers,” Opt. Lett. 42(17), 3419–3422 (2017).
[Crossref] [PubMed]

N. G. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999).
[Crossref] [PubMed]

Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks, “More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing,” Opt. Lett. 34(14), 2240–2242 (2009).
[Crossref] [PubMed]

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. Lett. 41(16), 3675–3678 (2016).
[Crossref] [PubMed]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

R. Alfano and S. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

R. Alfano and S. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experiment. ISO, isolator. LD, laser diode. MFA, mode field adapter. LPG, long period grating. LMA-YDF, large-mode-area ytterbium doped fiber.
Fig. 2
Fig. 2 The (a) power and (b) spectrum characteristics of the pre-amplifier.
Fig. 3
Fig. 3 Power properties and corresponding output beam profiles of the power amplifier for (a) LP01 and (b) LP11 mode.
Fig. 4
Fig. 4 Output spectrum evolution of (a) LP01 and (b) LP11 mode.
Fig. 5
Fig. 5 (a) The far field spot at maximum average output power of 54.51W. (b) Comparation of the output spectrum of the two modes at maximum pump power.

Metrics