Abstract

The realization of room-temperature (RT) mid-infrared (MIR) broadband light sources is fundamentally interesting and highly desirable for a number of applications. Recently, superluminescent light emitters (SLEs) based on quantum cascade (QC) structures have emerged as excellent candidates among mid-infrared broadband light sources. However, it is challenging to achieve RT-QCSLEs due to the very low efficiency of the spontaneous emission in the intersubband transitions. Here, we demonstrate the realization of a set of ~5 μm RT-SLEs under continuous wave (CW) or quasi-CW (10% duty circle) operation by using a two-phonon resonant QC active region and monolithic integrated waveguide structures. In addition, with the design of an inclined tapered cavity, the SLEs exhibit high milliwatt power, large spectral width of more than 200 cm−1 and good temperature characteristic. These demonstrated results are believed to be a big step forward to the applications of broadband MIR semiconductor light sources.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared broadband superluminescent light emitter arrays

Jialin Sun, Chuncai Hou, Jinchuan Zhang, Ning Zhuo, Hongmei Chen, Jiqiang Ning, Zhanguo Wang, Fengqi Liu, and Ziyang Zhang
Opt. Lett. 43(20) 5150-5153 (2018)

Enhanced light output power of quantum cascade lasers from a tilted front facet

Sangil Ahn, Clemens Schwarzer, Tobias Zederbauer, Hermann Detz, Aaron M. Andrews, Werner Schrenk, and Gottfried Strasser
Opt. Express 21(13) 15869-15877 (2013)

High power spiral cavity quantum cascade superluminescent emitter

Mei C. Zheng, Nyan L. Aung, Abanti Basak, Peter Q. Liu, Xiaojun Wang, Jen-Yu Fan, Mariano Troccoli, and Claire F. Gmachl
Opt. Express 23(3) 2713-2719 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
    [Crossref]
  2. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
    [Crossref]
  3. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
    [Crossref]
  4. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
    [Crossref]
  5. A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi B Basic Res. 250(5), 1020–1027 (2013).
    [Crossref]
  6. A. I. López-Lorente and B. Mizaikoff, “Mid-infrared spectroscopy for protein analysis: potential and challenges,” Anal. Bioanal. Chem. 408(11), 2875–2889 (2016).
    [Crossref] [PubMed]
  7. M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
    [Crossref] [PubMed]
  8. N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
    [Crossref]
  9. S. Riedi, F. Cappelli, S. Blaser, P. Y. Baroni, A. Müller, and J. Faist, “Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device,” Opt. Express 23(6), 7184–7189 (2015).
    [Crossref] [PubMed]
  10. M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).
  11. E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
    [Crossref]
  12. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
    [Crossref] [PubMed]
  13. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
    [Crossref]
  14. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
    [Crossref]
  15. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [Crossref]
  16. C. Becker and C. Sirtori, “Lateral current spreading in unipolar semiconductor lasers,” J. Appl. Phys. 90(4), 1688–1691 (2001).
    [Crossref]
  17. D. Mehuys and L. Goldberg, “High-power superluminescent diode source,” Electron. Lett. 30(20), 1682–1684 (1994).
    [Crossref]
  18. K. Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3 μm transmitter source,” IEEE. Photon. Technol. Lett. 7(9), 1025–1027 (1995).
    [Crossref]
  19. N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
    [Crossref] [PubMed]
  20. C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).
  21. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  22. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [Crossref] [PubMed]
  23. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [Crossref]
  24. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]

2018 (2)

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

2016 (2)

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

A. I. López-Lorente and B. Mizaikoff, “Mid-infrared spectroscopy for protein analysis: potential and challenges,” Anal. Bioanal. Chem. 408(11), 2875–2889 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

2013 (1)

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi B Basic Res. 250(5), 1020–1027 (2013).
[Crossref]

2011 (1)

2010 (2)

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

2009 (1)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

2006 (1)

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

2004 (1)

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

2003 (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

2002 (3)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

2001 (1)

C. Becker and C. Sirtori, “Lateral current spreading in unipolar semiconductor lasers,” J. Appl. Phys. 90(4), 1688–1691 (2001).
[Crossref]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1995 (1)

K. Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3 μm transmitter source,” IEEE. Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

1994 (1)

D. Mehuys and L. Goldberg, “High-power superluminescent diode source,” Electron. Lett. 30(20), 1682–1684 (1994).
[Crossref]

1981 (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Aho, A.

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

Aung, N. L.

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Baroni, P. Y.

Barton, J. S.

Basak, A.

Bauters, J. F.

Beck, M.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Becker, C.

C. Becker and C. Sirtori, “Lateral current spreading in unipolar semiconductor lasers,” J. Appl. Phys. 90(4), 1688–1691 (2001).
[Crossref]

Blaser, S.

S. Riedi, F. Cappelli, S. Blaser, P. Y. Baroni, A. Müller, and J. Faist, “Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device,” Opt. Express 23(6), 7184–7189 (2015).
[Crossref] [PubMed]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Blumenthal, D. J.

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Bowers, J. E.

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Cappelli, F.

Chen, H. M.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Childs, D. T. D.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Cockburn, J. W.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Dai, D.

Dalton, L. R.

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Faist, J.

S. Riedi, F. Cappelli, S. Blaser, P. Y. Baroni, A. Müller, and J. Faist, “Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device,” Opt. Express 23(6), 7184–7189 (2015).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Fan, J. Y.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fan, J.-Y.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Gmachl, C. F.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Goldberg, L.

D. Mehuys and L. Goldberg, “High-power superluminescent diode source,” Electron. Lett. 30(20), 1682–1684 (1994).
[Crossref]

Groom, K. M.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Guina, M.

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Hoffman, A. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Hofstetter, D.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Hogg, R. A.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Hopkinson, M.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Hou, C. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Huang, Y. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Jin, P.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

John, D.

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Koskinen, R.

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

Leinse, A.

Liou, K. Y.

K. Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3 μm transmitter source,” IEEE. Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

Liu, F. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

Liu, J. Q.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Liu, P. Q.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

López-Lorente, A. I.

A. I. López-Lorente and B. Mizaikoff, “Mid-infrared spectroscopy for protein analysis: potential and challenges,” Anal. Bioanal. Chem. 408(11), 2875–2889 (2016).
[Crossref] [PubMed]

Lv, X. Q.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Mehuys, D.

D. Mehuys and L. Goldberg, “High-power superluminescent diode source,” Electron. Lett. 30(20), 1682–1684 (1994).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Mizaikoff, B.

A. I. López-Lorente and B. Mizaikoff, “Mid-infrared spectroscopy for protein analysis: potential and challenges,” Anal. Bioanal. Chem. 408(11), 2875–2889 (2016).
[Crossref] [PubMed]

Müller, A.

Ng, W. H.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Ning, J. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Pflugl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Rabiei, P.

Raybon, G.

K. Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3 μm transmitter source,” IEEE. Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

Revin, D. G.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Riedi, S.

Rochat, M.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Seddon, A. B.

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi B Basic Res. 250(5), 1020–1027 (2013).
[Crossref]

Sirtori, C.

C. Becker and C. Sirtori, “Lateral current spreading in unipolar semiconductor lasers,” J. Appl. Phys. 90(4), 1688–1691 (2001).
[Crossref]

Steier, W. H.

Sun, Z. Z.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

Suomalainen, S.

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

Tien, M.-C.

Troccoli, M.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Viheriala, J.

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

Wang, L. J.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Wang, X.

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Wang, X. J.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Wang, Z. G.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Wilson, L. R.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Xu, B.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

Yu, Y.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Yu, Z.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Zhai, S. Q.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, J. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Zhang, Y. M.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

Zhang, Z. Y.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

Zheng, M. C.

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

M. C. Zheng, N. L. Aung, A. Basak, P. Q. Liu, X. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High power spiral cavity quantum cascade superluminescent emitter,” Opt. Express 23(3), 2713–2719 (2015).
[Crossref] [PubMed]

Zhuo, N.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Zia, N.

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

Zibik, E. A.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Adv. Opt. Photonics (1)

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

A. I. López-Lorente and B. Mizaikoff, “Mid-infrared spectroscopy for protein analysis: potential and challenges,” Anal. Bioanal. Chem. 408(11), 2875–2889 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

N. Zia, J. Viheriala, R. Koskinen, A. Aho, S. Suomalainen, and M. Guina, “High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element,” Appl. Phys. Lett. 109(23), 231102 (2016).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Electron. Lett. (2)

D. Mehuys and L. Goldberg, “High-power superluminescent diode source,” Electron. Lett. 30(20), 1682–1684 (1994).
[Crossref]

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

IEEE. J. Quantum Electron. (1)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE. J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

IEEE. Photon. Technol. Lett. (2)

K. Y. Liou and G. Raybon, “Operation of an LED with a single-mode semiconductor amplifier as a broad-band 1.3 μm transmitter source,” IEEE. Photon. Technol. Lett. 7(9), 1025–1027 (1995).
[Crossref]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE. Photon. Technol. Lett. 16(1), 27–29 (2004).
[Crossref]

J. Appl. Phys. (1)

C. Becker and C. Sirtori, “Lateral current spreading in unipolar semiconductor lasers,” J. Appl. Phys. 90(4), 1688–1691 (2001).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. T. D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light Sci. Appl. 7(3), 17170 (2018).

Nanoscale Res. Lett. (1)

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144–150 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Eng. (1)

M. C. Zheng, Y. M. Zhang, P. Q. Liu, X. J. Wang, J. Y. Fan, M. Troccoli, and C. F. Gmachl, “High-power spiral cavity quantum cascade superluminescent emitters with a passive loop back facet,” Opt. Eng. 57(1), 011001 (2018).

Opt. Express (3)

Phys. Status Solidi B Basic Res. (1)

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi B Basic Res. 250(5), 1020–1027 (2013).
[Crossref]

Science (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of two emitting stages of the two-phonon resonance based quantum cascade energy level.
Fig. 2
Fig. 2 Schematic diagram of the QC based SLEs in all the device fabrication rounds.
Fig. 3
Fig. 3 (a)The corresponding emission spectra and (b) light-current characeristic from the wide and narrow emitting facets for different lengths of SLEs measured under quasi-CW mode at 300K. The lines corresponding to Gaussian fit to the spectra.
Fig. 4
Fig. 4 Output power and FWHM vs. temperature from the wide and narrow facets of the 3 mm SLE.
Fig. 5
Fig. 5 (a) At 80 K, L-I characteristics and interferograms at 4.7 A taken in step scan mode with a resolution of 8 cm−1 from the dual ends of the inclined tapered regime. (b) At 300 K, L-I characteristics and interferograms at 4.5 A taken in step scan mode with a resolution of 8 cm−1 from the dual ends of the inclined tapered regime. Insets: the corresponding emission spectra under 4.7 A and 4.5 A from the dual ends of the inclined tapered regime.The lines correspond to Gaussian fit to the spectra. (c) Output power and FWHM vs. temperature of the dual ends emission of the inclined tapered regime.
Fig. 6
Fig. 6 (a) Spectra from wide facet with a resolution of 0.5 cm−1 obtained in the fast scan mode of the 3 mm long tilted optical amplifier regime at 4.7 A and 4.6 A at 80 K. (b) The interferograms taken in step scan mode with a resolution of 1 cm−1 under the same operating conditions as the spectra shown in (a) of the 3 mm long tilted optical amplifier regime.
Fig. 7
Fig. 7 Spectra and L-I characteristic from the wide facet of the inclined tapered SLE with 15°, 16°, 17° tilt angle separately.

Tables (1)

Tables Icon

Table 1 Parameters of the SLEs geometry

Metrics