Abstract

The performance of incandescent light bulbs and thermophotovoltaic devices is fundamentally limited by our ability to tailor the emission spectrum of the thermal emitter. While much work has focused on improving the spectral selectivity of emitters and filters, relatively low view factors between the emitter and filter limit the efficiency of the systems. In this work, we investigate the use of specular side reflectors between the emitter and filter to increase the effective view factor and thus system efficiency. Using an analytical model and experiments, we demonstrate significant gains in efficiency (>10%) for systems converting broadband thermal radiation to a tailored spectrum using low-cost and easy-to-implement specular side reflectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

David N. Woolf, Emil A. Kadlec, Don Bethke, Albert D. Grine, John J. Nogan, Jeffrey G. Cederberg, D. Bruce Burckel, Ting Shan Luk, Eric A. Shaner, and Joel M. Hensley
Optica 5(2) 213-218 (2018)

Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(S6) A1035-A1051 (2013)

Nanophotonic control of thermal radiation for energy applications [Invited]

Wei Li and Shanhui Fan
Opt. Express 26(12) 15995-16021 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Murphy., “Maximum spectral luminous efficacy of white light,” J. Appl. Phys. 111(10), 1–6 (2012).
    [Crossref]
  2. A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
    [Crossref]
  3. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
    [Crossref] [PubMed]
  4. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
    [Crossref]
  5. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  6. T. Matsumoto and M. Tomita, “Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design,” Opt. Express 18(S2), A192–A200 (2010).
    [Crossref] [PubMed]
  7. H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
    [Crossref]
  8. V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
    [Crossref]
  9. V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7Suppl 7), A1895–A1906 (2014).
    [Crossref] [PubMed]
  10. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  11. C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
    [Crossref]
  12. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  13. Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
    [Crossref] [PubMed]
  14. R. S. Bergman and T. G. Parham, “Applications of thin film reflecting coating technology to tungsten filament lamps,” Sci. Meas. Technol. IEE Proc. A 140, 418–428 (1993).
    [Crossref]
  15. B. E. Yoldas and T. O’Keefe, “Deposition of optically transparent IR reflective coatings on glass,” Appl. Opt. 23(20), 3638–3643 (1984).
    [Crossref] [PubMed]
  16. R. L. Martin, Jr. and J. D. Rancourt, “Optical coatings for high temperature applications,” U.S. patent 4,663,557A (May 5, 1987).
  17. Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
    [Crossref]
  18. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
    [Crossref]
  19. A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604–A1618 (2014).
    [Crossref] [PubMed]
  20. R. L. Martin., “Coatings for lighting applications,” Opt. News 12(8), 23 (1986).
    [Crossref]
  21. J. D. Rancourt and R. L. Martin., “High temperature lamp coatings,” Proc. SPIE 678, 185–191 (1986).
    [Crossref]
  22. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [Crossref]
  23. E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.
  24. E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 1–10 (2016).
    [Crossref]
  25. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  26. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
    [Crossref]
  27. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
    [Crossref]
  28. Z. Zhou, O. Yehia, and P. Bermel, “An integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 16014 (2016).
  29. A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).
  30. S. Maruyama, “Radiation Heat Transfer Between Arbitrary Three-Dimensional Bodies with Specular and Diffuse Surfaces,” Numer. Heat Transf. Part A Appl. 24(2), 181–196 (1993).
    [Crossref]
  31. A. S. Jamaluddin and W. A. Fivelandt, “Radiative Transfer in Multidimensional Enclosures with Specularly Reflecting Walls,” J. Thermophys. Heat Transf. 6(1), 190–192 (1992).
    [Crossref]
  32. E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Transfer 84(4), 294–299 (1962).
    [Crossref]
  33. A. M. Abdel-Ghany and T. Kozai, “Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit,” Energy Convers. Manage. 47(13-14), 1988–1998 (2006).
    [Crossref]
  34. R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
    [Crossref]
  35. M. F. Modest, Radiative Heat Transfer (Academic, 2013).
  36. U. Gross, K. Spindler, and E. Hahne, “Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries,” Lett. Heat Mass Transf. 8, 219–227 (1981).
  37. N. Lauzier, “View Factor - File Exchange - MATLAB Central,” https://www.mathworks.com/matlabcentral/fileexchange/5664-view-factors .

2017 (3)

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

2016 (4)

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 1–10 (2016).
[Crossref]

Z. Zhou, O. Yehia, and P. Bermel, “An integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 16014 (2016).

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

2014 (4)

2013 (3)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

2012 (2)

T. W. Murphy., “Maximum spectral luminous efficacy of white light,” J. Appl. Phys. 111(10), 1–6 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

2010 (1)

2007 (1)

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
[Crossref]

2006 (1)

A. M. Abdel-Ghany and T. Kozai, “Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit,” Energy Convers. Manage. 47(13-14), 1988–1998 (2006).
[Crossref]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

2003 (1)

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
[Crossref]

2002 (1)

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

2000 (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

1993 (1)

S. Maruyama, “Radiation Heat Transfer Between Arbitrary Three-Dimensional Bodies with Specular and Diffuse Surfaces,” Numer. Heat Transf. Part A Appl. 24(2), 181–196 (1993).
[Crossref]

1992 (1)

A. S. Jamaluddin and W. A. Fivelandt, “Radiative Transfer in Multidimensional Enclosures with Specularly Reflecting Walls,” J. Thermophys. Heat Transf. 6(1), 190–192 (1992).
[Crossref]

1991 (1)

R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
[Crossref]

1986 (2)

R. L. Martin., “Coatings for lighting applications,” Opt. News 12(8), 23 (1986).
[Crossref]

J. D. Rancourt and R. L. Martin., “High temperature lamp coatings,” Proc. SPIE 678, 185–191 (1986).
[Crossref]

1984 (1)

1981 (1)

U. Gross, K. Spindler, and E. Hahne, “Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries,” Lett. Heat Mass Transf. 8, 219–227 (1981).

1962 (1)

E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Transfer 84(4), 294–299 (1962).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abdel-Ghany, A. M.

A. M. Abdel-Ghany and T. Kozai, “Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit,” Energy Convers. Manage. 47(13-14), 1988–1998 (2006).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Aimone, P. R.

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Aschaber, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
[Crossref]

Barnes, J. W.

R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
[Crossref]

Bathurst, S.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Bermel, P.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Z. Zhou, O. Yehia, and P. Bermel, “An integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 16014 (2016).

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 1–10 (2016).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.

Bhatia, B.

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604–A1618 (2014).
[Crossref] [PubMed]

Billings, R. L.

R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
[Crossref]

Bläsi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

Boerner, V.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
[Crossref]

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Celanovic, I.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7Suppl 7), A1895–A1906 (2014).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Chan, W. R.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chen, G.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Chou, J.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Chou, J. B.

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Constant, K.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
[Crossref]

Dimonte, D.

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 1–10 (2016).
[Crossref]

Dowling, J. P.

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

Eckert, E. R. G.

E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Transfer 84(4), 294–299 (1962).
[Crossref]

Fan, S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Fivelandt, W. A.

A. S. Jamaluddin and W. A. Fivelandt, “Radiative Transfer in Multidimensional Enclosures with Specularly Reflecting Walls,” J. Thermophys. Heat Transf. 6(1), 190–192 (1992).
[Crossref]

Freundlich, A.

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Ghebrebrhan, M.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

Granier, C. H.

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

Gross, U.

U. Gross, K. Spindler, and E. Hahne, “Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries,” Lett. Heat Mass Transf. 8, 219–227 (1981).

Hahne, E.

U. Gross, K. Spindler, and E. Hahne, “Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries,” Lett. Heat Mass Transf. 8, 219–227 (1981).

Hashimoto, N.

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

Ho, K.-M.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
[Crossref]

Howell, J. R.

R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
[Crossref]

Ilic, O.

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Jamaluddin, A. S.

A. S. Jamaluddin and W. A. Fivelandt, “Radiative Transfer in Multidimensional Enclosures with Specularly Reflecting Walls,” J. Thermophys. Heat Transf. 6(1), 190–192 (1992).
[Crossref]

Joannopoulos, J.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Joannopoulos, J. D.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7Suppl 7), A1895–A1906 (2014).
[Crossref] [PubMed]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Jonsson, V. K.

E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Transfer 84(4), 294–299 (1962).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Kawagoe, S.

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

Kim, S. G.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Kim, S.-G.

Kim, Y.-S.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
[Crossref]

Kozai, T.

A. M. Abdel-Ghany and T. Kozai, “Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit,” Energy Convers. Manage. 47(13-14), 1988–1998 (2006).
[Crossref]

Lee, H. J.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Lee, J.-H.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
[Crossref]

Lenert, A.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604–A1618 (2014).
[Crossref] [PubMed]

Leroy, A.

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

Lombez, L.

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.

Lorenzo, S. G.

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Luther, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
[Crossref]

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Martin, R. L.

R. L. Martin., “Coatings for lighting applications,” Opt. News 12(8), 23 (1986).
[Crossref]

J. D. Rancourt and R. L. Martin., “High temperature lamp coatings,” Proc. SPIE 678, 185–191 (1986).
[Crossref]

Maruyama, S.

S. Maruyama, “Radiation Heat Transfer Between Arbitrary Three-Dimensional Bodies with Specular and Diffuse Surfaces,” Numer. Heat Transf. Part A Appl. 24(2), 181–196 (1993).
[Crossref]

Matsumoto, T.

Murphy, T. W.

T. W. Murphy., “Maximum spectral luminous efficacy of white light,” J. Appl. Phys. 111(10), 1–6 (2012).
[Crossref]

Nam, Y.

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

O’Keefe, T.

Omata, Y.

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Rancourt, J. D.

J. D. Rancourt and R. L. Martin., “High temperature lamp coatings,” Proc. SPIE 678, 185–191 (1986).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7Suppl 7), A1895–A1906 (2014).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Saka, N.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Sakr, E.

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 1–10 (2016).
[Crossref]

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.

Schäffler, F.

Schlemmer, C.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Shen, Y.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Slotboom, O. E.

R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
[Crossref]

Smyth, K.

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Soljacic, M.

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7Suppl 7), A1895–A1906 (2014).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Sparrow, E. M.

E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Transfer 84(4), 294–299 (1962).
[Crossref]

Spindler, K.

U. Gross, K. Spindler, and E. Hahne, “Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries,” Lett. Heat Mass Transf. 8, 219–227 (1981).

Stelmakh, V.

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Suemitsu, T.

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

Sugiyama, M.

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.

Tomita, M.

Veronis, G.

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

Wang, E. N.

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604–A1618 (2014).
[Crossref] [PubMed]

Wilke, K.

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

Yehia, O.

Z. Zhou, O. Yehia, and P. Bermel, “An integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 16014 (2016).

Yeng, Y. X.

Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Yokoyama, M.

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

Yoldas, B. E.

You, C.

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Zhou, Z.

Z. Zhou, O. Yehia, and P. Bermel, “An integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 16014 (2016).

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Adv. Mater. (1)

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission,” Adv. Mater. 19(6), 791–794 (2007).
[Crossref]

AIP Conf. Proc. (1)

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc. 653, 164–173 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Leroy, B. Bhatia, K. Wilke, O. Ilic, M. Soljačić, and E. N. Wang, “Combined selective emitter and filter for high performance incandescent lighting,” Appl. Phys. Lett. 111(9), 094103 (2017).
[Crossref]

H. J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S. G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Energy Convers. Manage. (1)

A. M. Abdel-Ghany and T. Kozai, “Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit,” Energy Convers. Manage. 47(13-14), 1988–1998 (2006).
[Crossref]

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

T. W. Murphy., “Maximum spectral luminous efficacy of white light,” J. Appl. Phys. 111(10), 1–6 (2012).
[Crossref]

J. Heat Transfer (2)

R. L. Billings, J. W. Barnes, J. R. Howell, and O. E. Slotboom, “Markov Analysis of Radiative Transfer in Specular Enclosures,” J. Heat Transfer 113(2), 429 (1991).
[Crossref]

E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Transfer 84(4), 294–299 (1962).
[Crossref]

J. Mod. Opt. (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47(13), 2399–2419 (2000).
[Crossref]

J. Nanophotonics (1)

Z. Zhou, O. Yehia, and P. Bermel, “An integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 16014 (2016).

J. Opt. (1)

C. H. Granier, S. G. Lorenzo, C. You, G. Veronis, and J. P. Dowling, “Optimized aperiodic broadband visible absorbers,” J. Opt. 19(10), 105003 (2017).
[Crossref]

J. Thermophys. Heat Transf. (1)

A. S. Jamaluddin and W. A. Fivelandt, “Radiative Transfer in Multidimensional Enclosures with Specularly Reflecting Walls,” J. Thermophys. Heat Transf. 6(1), 190–192 (1992).
[Crossref]

Lett. Heat Mass Transf. (1)

U. Gross, K. Spindler, and E. Hahne, “Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries,” Lett. Heat Mass Transf. 8, 219–227 (1981).

Light. Res. Technol. (1)

Y. Omata, N. Hashimoto, S. Kawagoe, T. Suemitsu, and M. Yokoyama, “Sputtering deposition of infra-red reflecting films on ellipsoidal bulbs of energy saving lamps,” Light. Res. Technol. 34(2), 111–119 (2002).
[Crossref]

MRS Adv. (1)

E. Sakr, D. Dimonte, and P. Bermel, “Metasurfaces with Fano resonances for directionally selective thermal emission,” MRS Adv. 1(49), 1–10 (2016).
[Crossref]

Nat. Commun. (1)

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Nat. Energy (1)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Nat. Nanotechnol. (1)

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Numer. Heat Transf. Part A Appl. (1)

S. Maruyama, “Radiation Heat Transfer Between Arbitrary Three-Dimensional Bodies with Specular and Diffuse Surfaces,” Numer. Heat Transf. Part A Appl. 24(2), 181–196 (1993).
[Crossref]

Opt. Express (4)

Opt. News (1)

R. L. Martin., “Coatings for lighting applications,” Opt. News 12(8), 23 (1986).
[Crossref]

Phys. Rev. B (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

J. D. Rancourt and R. L. Martin., “High temperature lamp coatings,” Proc. SPIE 678, 185–191 (1986).
[Crossref]

Therm. Radiat. Manag. Energy Appl. (1)

A. Leroy, K. Wilke, M. Soljačić, E. N. Wang, B. Bhatia, and O. Ilic, “High performance incandescent light bulb using a selective emitter and nanophotonic filters,” Therm. Radiat. Manag. Energy Appl. 14, 14 (2017).

Other (5)

E. Sakr and P. Bermel, “Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures,” in Proceedings of the Society of Photo-Optical Instrumentation EngineersA. Freundlich, L. Lombez, and M. Sugiyama, (2017), 10099, p. 100990A.

R. L. Martin, Jr. and J. D. Rancourt, “Optical coatings for high temperature applications,” U.S. patent 4,663,557A (May 5, 1987).

M. F. Modest, Radiative Heat Transfer (Academic, 2013).

R. S. Bergman and T. G. Parham, “Applications of thin film reflecting coating technology to tungsten filament lamps,” Sci. Meas. Technol. IEE Proc. A 140, 418–428 (1993).
[Crossref]

N. Lauzier, “View Factor - File Exchange - MATLAB Central,” https://www.mathworks.com/matlabcentral/fileexchange/5664-view-factors .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Influence of view factor between a tungsten emitter and different cold-side filters on the system efficiency as defined by Eq. (1). (a) The optical properties of the tungsten emitter at 2800 K and filter (reflectivity RVIS = δ in the visible and RIR = 1-δ in the infrared; absorption in the filter is neglected). (b) Efficiency of different emitter-filter systems as a function of view factor and non-ideality factor δ in the filter. The efficiency is strongly dependent on the view factor, particularly for δ = 0.01 and F > 0.95, due to the high average number of reflections that occur between the emitter and filter before a photon is absorbed or escapes the system.
Fig. 2
Fig. 2 Schematics showing fully-specular (a) 2-D and (b) 3-D enclosures for radiative heat transfer model with the emitter (Ae), the cold-side filter or photovoltaic (PV) cell (Af) and side reflectors (Aref). Only three of the four surfaces of the side reflectors are shown in the 3-D enclosure (b) for visualization.
Fig. 3
Fig. 3 Influence of specular side reflectors (ρs = 0.95) in a 3-D rectangular enclosure on the efficiency for different (a) gray emitters and (b) selective emitters as a function of dimensionless gap spacing S*. Selective emitters have blackbody emission in the visible and emissivity εIR in the infrared.
Fig. 4
Fig. 4 Influence of specular side reflectors reflectivity on system efficiency. Same optical properties of the gray emitter (ε = 0.2) and filter (ρIR = 0.85 in the infrared and τVIS = 1 in the visible) were assumed for all curves.
Fig. 5
Fig. 5 (a) Schematic of the experimental setup. A planar 6 mm × 10 mm tungsten emitter is sandwiched between two cold-side nanophotonic filters (see Appendix E for optical properties) maintained at a fixed spacing by copper supports. The experiment was set up inside a bell jar vacuum chamber to minimize the effects of contaminants. (b) Close-up view of the assembled system consisting of the emitter, filters, and side reflectors. (c) Comparison of power consumption of a tungsten emitter coupled with nanophotonic filters at different spacings with and without silver coated side reflectors. Dimensionless emitter-filter gap spacing (S*) assumes a characteristic emitter length of 7.5 mm corresponding to 4 × Area/Perimeter. Due to the limited vacuum chamber size, the experimental measurement reported at an emitter-filter gap spacing of ∞ mm was performed without filters, equivalent to filters being so far to not interact with the emitted radiation (i.e., F ee s = 0 indicating that no emitted radiation is reflected back to the emitter), as suggested by the theory for emitter-filter gap spacing > 103 mm. The shaded areas represent the upper and lower bounds of the 3-D theoretical model when modeling for absolute changes of ± 0.01 in the reflectivity of the surfaces and ± 20 K in the emitter temperature. The error bars for the data points, including experimental error of the power consumption (current and voltage) and emitter-filter spacings, are smaller than the markers.
Fig. 6
Fig. 6 (a) 2-D rectangular enclosure for the derivation of the specular view factors. (b) 3-D rectangular enclosure for the derivation of the specular view factors. For illustration purposes, surface A3 (parallel to A4) is hidden.
Fig. 7
Fig. 7 Map of physical (A1 to A4) and virtual images (Ax(y-z-w)) due to specular reflections. Only a sample of the map is shown as the map extends to infinity in all directions. Using this map, we can find all possible real and virtual images with their corresponding reflecting surfaces as seen by a real image. A color code is used to show which images surface A1 sees either through direct travel or through reflections (green: A1; red: A2; purple: A3; blue: A4; dark: not visible from A1, assuming the face of A1 facing the inside of the rectangular cavity)
Fig. 8
Fig. 8 Reflections over side reflectors A5 and A6 of the 2-D map of physical and virtual images from Fig. 7 (here shown as the blue middle plane).
Fig. 9
Fig. 9 Validation of analytical specular view factors with ray tracing simulation for (a) A1 square with ρ1 = 0.99, ρ2 = 0.85 and ρ3-6 = 0.95; (b) A1 square with ρ1 = 0, ρ2 = 0.85 and ρ3-6 = 0.95; (c) A1 rectangular (1 × 2) with ρ1 = 0.99, ρ2 = 0.85 and ρ3-6 = 0.95. Because A1 is rectangular, F 13 s and F 15 s are different.
Fig. 10
Fig. 10 (a) Comparison between specular and diffuse reflections in the calculation of the efficiency of different gray emitters at 2800 K when combined with an optical filter and side reflectors. (b) Comparison between 2-D and 3-D assumptions in the calculation of the efficiency of different gray emitters at 2800 K when combined with an optical filter and side reflectors.
Fig. 11
Fig. 11 (a) Tungsten emitter emissivity, (b) side reflector direct-hemispherical reflectance at normal incidence angle and (c) filter reflectivity averaged over the range of incident angles 0° to 70° by increments of 5°.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

η= Q transmitted filter,   400 nm<λ<700 nm Q emitted,tot
F ij s = Diffuse energy leaving A i intercepted by A j by direct travel or any number of specular reflections Total diffuse energy leaving A i
E bi j=1 N ( 1 ρ j s ) F ij s E bj = q i ϵ i j=1 N ρ j d ϵ j F ij s q j + H oi s ,    i=1,2,,N
j=1 N ( 1 ρ j s ) F ij s =1
q e =  ϵ e E e [ 1( 1 ρ e s ) F ee s ]
q f =  ϵ e E e F ef s
η= λ 1 =400 nm λ 2 =700 nm ϵ e E e F ef s dλ 0 ϵ e E e ( 1 F ee s ( 1 ρ e s ) )dλ
F 11 s =  M=0 N=0 ρ 1 M ρ 2 M+1 [ F 1( 1 M 2 M+1 )1 +2 ( ρ 3 ρ 4 ) N+1 F 1( 1 M 2 M+1 3 N+1 4 N+1 )1 +  ρ 3 N+1 ρ 4 N F 1( 1 M 2 M+1 3 N+1 4 N )1 + ρ 3 N F 1( 1 M 2 M+1 3 N 4 N+1 )1 ]
F 12 s = M=0 N=0 ( ρ 1 ρ 2 ) M [ F 1( 1 M 2 M )2 +2 ( ρ 3 ρ 4 ) N+1 F 1( 1 M 2 M 3 N+1 4 N+1 )2 + ρ 3 N+1 ρ 4 N F 1( 1 M 2 M 3 N+1 4 N )2 + ρ 3 N ρ 4 N+1 F 1( 1 M 2 M 3 N 4 N+1 )2 ]
F 13 s =  M=0 N=0 { ( ρ 1 ρ 2 ) M [ ( ρ 3 ρ 4 ) N F 1( 1 M 2 M 3 N 4 N )3 + ρ 3 N ρ 4 N+1 F 1( 1 M 2 M 3 N 4 N+1 )3   ] + ρ 1 M ρ 2 M+1 [ ( ρ 3 ρ 4 ) N F 1( 1 M 2 M+1 3 N 4 N )3 + ρ 3 N ρ 4 N+1 F 1( 1 M 2 M+1 3 N 4 N+1 )3   ] }
F 11 s = M=0 N=0 P=0 ρ 1 M ρ 2 M+1 { F 1( 1 M 2 M+1 )1 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M+1 5 P+1 6 P+1 )1 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M+1 5 P+1 6 P )1 + ρ 5 P ρ 6 P+1 F 1( 1 M 2 M+1 5 P 6 P+1 )1 + ρ 3 N+1 ρ 4 N [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M+1 3 N+1 4 N 5 P 6 P+1 )1 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M+1 3 N+1 4 N 5 P+1 6 P )1 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M+1 3 N+1 4 N 5 P+1 6 P+1 )1 + F 1( 1 M 2 M+1 3 N+1 4 N )1 ] + ρ 3 N ρ 4 N+1 [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M+1 3 N 4 N+1 5 P 6 P+1 )1 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M+1 3 N 4 N+1 5 P+1 6 P )1 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M+1 3 N 4 N+1 5 P+1 6 P+1 )1 + F 1( 1 M 2 M+1 3 N 4 N+1 )1 ] +2 ρ 3 N+1 ρ 4 N+1 [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M+1 3 N+1 4 N+1 5 P 6 P+1 )1 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M+1 3 N+1 4 N+1 5 P+1 6 P )1 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M+1 3 N+1 4 N+1 5 P+1 6 P+1 )1 + F 1( 1 M 2 M+1 3 N+1 4 N+1 )1 ] }
F 12 s = M=0 N=0 P=0 ( ρ 1 ρ 2 ) M { F 1( 1 M 2 M )2 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M 5 P+1 6 P+1 )2 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M 5 P+1 6 P )2 + ρ 5 P ρ 6 P+1 F 1( 1 M 2 M 5 P 6 P+1 )2 + ρ 3 N+1 ρ 4 N [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M 3 N+1 4 N 5 P 6 P+1 )2 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M 3 N+1 4 N 5 P+1 6 P )2 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M 3 N+1 4 N 5 P+1 6 P+1 )2 + F 1( 1 M 2 M 3 N+1 4 N )2 ] + ρ 3 N ρ 4 N+1 [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M 3 N 4 N+1 5 P 6 P+1 )2 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M 3 N 4 N+1 5 P+1 6 P )2 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M 3 N 4 N+1 5 P+1 6 P+1 )2 + F 1( 1 M 2 M 3 N 4 N+1 )2 ] +2 ρ 3 N+1 ρ 4 N+1 [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M 3 N+1 4 N+1 5 P 6 P+1 )2 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M 3 N+1 4 N+1 5 P+1 6 P )2 +2 ( ρ 5 ρ 6 ) P+1 F 1( 1 M 2 M 3 N+1 4 N+1 5 P+1 6 P+1 )2 + F 1( 1 M 2 M 3 N+1 4 N+1 )2 ] }
F 13 s = M=0 N=0 P=0 ( ρ 1 ρ 2 ) M { ( ρ 3 ρ 4 ) N [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M 3 N 4 N 5 P 6 P+1 )3 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M 3 N 4 N 5 P+1 6 P )3 +2 ( ρ 5 ρ 6 ) P F 1( 1 M 2 M 3 N 4 N 5 P 6 P )3 F 1( 1 M 2 M 3 N 4 N )3 ] + ρ 3 N ρ 4 N+1 [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M 3 N 4 N+1 5 P 6 P+1 )3 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M 3 N 4 N+1 5 P+1 6 P )3 +2 ( ρ 5 ρ 6 ) P F 1( 1 M 2 M 3 N 4 N+1 5 P 6 P )3 F 1( 1 M 2 M 3 N 4 N+1 )3 ] } + M=0 N=0 P=0 ρ 1 M ρ 2 M+1 { ( ρ 3 ρ 4 ) N [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M+1 3 N 4 N 5 P 6 P+1 )3 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M+1 3 N 4 N 5 P+1 6 P )3 +2 ( ρ 5 ρ 6 ) P F 1( 1 M 2 M+1 3 N 4 N 5 P 6 P )3 F 1( 1 M 2 M+1 3 N 4 N )3 ] + ρ 3 N ρ 4 N+1 [ ρ 5 P ρ 6 P+1 F 1( 1 M 2 M+1 3 N 4 N+1 5 P 6 P+1 )3 + ρ 5 P+1 ρ 6 P F 1( 1 M 2 M+1 3 N 4 N+1 5 P+1 6 P )3 +2 ( ρ 5 ρ 6 ) P F 1( 1 M 2 M+1 3 N 4 N+1 5 P 6 P )3 F 1( 1 M 2 M+1 3 N 4 N+1 )3 ] }

Metrics