Abstract

Silicon nitride-on-silicon bi-layer grating couplers were designed for the O-band using an optimization-based procedure that accounted for design rules and fabricated on a 200 mm wafer. The designs were sufficiently robust to fabrication variations to function well across the wafer. A peak fiber-to-chip coupling efficiency to standard single mode fiber of −2.2 dB and a 1-dB bandwidth of 72.9 nm was achieved in the representative device. Over several chips across the wafer, we measured a median peak coupling efficiency of −2.1 dB and median 1-dB bandwidth of 70.8 nm. The measurements had good correspondence with simulation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip unidirectional dual-band fiber-chip grating coupler in silicon nitride

Siddharth Nambiar, Hemalatha Muthuganesan, Tarun Sharma, and Shankar Kumar Selvaraja
OSA Continuum 1(3) 864-871 (2018)

SiNx bilayer grating coupler for photonic systems

Eng Wen Ong, Nicholas M. Fahrenkopf, and Douglas D. Coolbaugh
OSA Continuum 1(1) 13-25 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.
  2. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.
  3. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Scientific Reports 7, 42306 (2017).
    [Crossref]
  4. J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
    [Crossref]
  5. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
    [Crossref] [PubMed]
  6. A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.
  7. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
    [Crossref]
  8. W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.
  9. S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.
  10. C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.
  11. A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Optics Express 26, 4766–4779 (2018).
    [Crossref] [PubMed]
  12. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
    [Crossref] [PubMed]
  13. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
    [Crossref]
  14. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
    [Crossref] [PubMed]
  15. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
    [Crossref]
  16. Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
    [Crossref] [PubMed]
  17. M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.
  18. D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Applications 79, 157–181 (1993).
    [Crossref]
  19. J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” Journal of Global Optimization 21, 27–37 (2001).
    [Crossref]
  20. Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
    [Crossref]
  21. Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.
  22. Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation 3, 124–141 (1999).
    [Crossref]
  23. W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” Journal of Computational Physics 122, 218–230 (1995).
    [Crossref]
  24. S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt . [Online].
  25. J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th3F–2.
  26. L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
    [Crossref] [PubMed]
  27. Lumerical Inc., http://www.lumerical.com/tcad-products/fdtd/ .

2018 (2)

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Optics Express 26, 4766–4779 (2018).
[Crossref] [PubMed]

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

2017 (2)

Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Scientific Reports 7, 42306 (2017).
[Crossref]

2015 (2)

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
[Crossref]

2014 (4)

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

2010 (1)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
[Crossref]

2007 (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

2001 (1)

J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” Journal of Global Optimization 21, 27–37 (2001).
[Crossref]

1999 (1)

Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation 3, 124–141 (1999).
[Crossref]

1995 (1)

W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” Journal of Computational Physics 122, 218–230 (1995).
[Crossref]

1993 (1)

D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Applications 79, 157–181 (1993).
[Crossref]

Acosta-Alba, P.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Alonso-Ramos, C.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Atabaki, A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Babaud, L.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Baks, C.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Baudot, C.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Benedikovich, D.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Bernier, E.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Berroth, M.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Blanc, R.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Boeuf, F.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Bogaerts, W.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Bois, A.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Bojko, R.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Bovington, J. T.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Bowers, J. E.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Brision, S.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Buhl, L. L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
[Crossref]

Burghartz, J.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Butschke, J.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Caflisch, R. E.

W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” Journal of Computational Physics 122, 218–230 (1995).
[Crossref]

Cassan, E.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Celo, D.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Chen, L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
[Crossref]

Chen, Y.-K.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
[Crossref]

Chrostowski, L.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Scientific Reports 7, 42306 (2017).
[Crossref]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Coldren, L. A.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Cole, D. B.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Crémer, S.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Davenport, M. L.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Ding, L.

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Doerr, C. R.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
[Crossref]

Douix, M.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Doylend, J. K.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Dumais, P.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Dupré, C.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Eberhart, R. C.

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

Eiben, Á. E.

Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation 3, 124–141 (1999).
[Crossref]

Euvrard-Colnat, C.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Fish, G.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Fowler, D.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Gablonsky, J. M.

J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” Journal of Global Optimization 21, 27–37 (2001).
[Crossref]

Geng, D.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Gentry, C. M.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Ghosh, S.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Goodwill, D.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Goodwill, D. J.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Guerber, S.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Guzzon, R. S.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Hasegawa, J.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

He, J.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Heck, M. J. R.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Hinterding, R.

Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation 3, 124–141 (1999).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Huang, Y.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Hulme, J. C.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Ikeda, K.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Imamura, J.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Jayatilleka, H.

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Jeong, J.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Jiang, J.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Jones, D. R.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Applications 79, 157–181 (1993).
[Crossref]

Kawashima, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Kelley, C. T.

J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” Journal of Global Optimization 21, 27–37 (2001).
[Crossref]

Kerdiles, S.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Koch, B.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Konoike, R.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Kopp, C.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Kumar, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Kunze, A.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Lee, B. G.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Letzkus, F.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Li, M.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Liu, Q.

Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
[Crossref]

Liu, W.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Lo, G.-Q.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Ma, C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Mak, J. C. C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Malhouitre, S.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Marris-Morini, D.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Matsuura, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Meghelli, M.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Mehrvar, H.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Messaoudène, S.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Michaels, A.

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Optics Express 26, 4766–4779 (2018).
[Crossref] [PubMed]

Michalewicz, Z.

Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation 3, 124–141 (1999).
[Crossref]

Mikkelsen, J. C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Morokoff, W. J.

W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” Journal of Computational Physics 122, 218–230 (1995).
[Crossref]

Namiki, S.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Norberg, E.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Notaros, J.

J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th3F–2.

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Patel, D.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Pavanello, F.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Pérez-Galacho, D.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Perttunen, C. D.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Applications 79, 157–181 (1993).
[Crossref]

Peters, J. D.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

Piggott, A. Y.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Planchot, J.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Plant, D. V.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Poon, J. K. S.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Popovic, M.

J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th3F–2.

Popovic, M. A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Proesel, J.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Scientific Reports 7, 42306 (2017).
[Crossref]

Ram, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Ramaswamy, A.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Rimolo-Donadio, R.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Roth, J.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Rylyakov, A.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Sacher, W. D.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Samani, A.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Sapra, N. V.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Schow, C.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Shi, W.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Shi, Y.

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

Shin, J.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Sparacin, D.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

Stojanovic, V.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Stuckman, B. E.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Applications 79, 157–181 (1993).
[Crossref]

Su, L.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Su, Z.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Suda, S.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Suzuki, K.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

Szelag, B.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Scientific Reports 7, 42306 (2017).
[Crossref]

Taylor, B. J. F.

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Trivedi, R.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Tu, X.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Van Thourhout, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

Veerasubramanian, V.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Vercruysse, D.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Vivien, L.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Vogel, W.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Vuckovic, J.

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Vulliet, N.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Wade, M. T.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Wang, Y.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Wei, Y.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Wilmart, Q.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

Yablonovitch, E.

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Optics Express 26, 4766–4779 (2018).
[Crossref] [PubMed]

Yan, S.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Yang, G.

Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
[Crossref]

Yang, Y.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Yong, Z.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Zaoui, W. S.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

Zeng, J.

Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
[Crossref]

Zhang, C.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Zhang, Z.

Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
[Crossref]

Zhao, F.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

Zhong, Q.

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

IEEE Journal of Selected Topics in Quantum Electronics (1)

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE Journal of Selected Topics in Quantum Electronics 20, 264–278 (2014).
[Crossref]

IEEE Photonics Technology Letters (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technology Letters 19, 1919–1921 (2007).
[Crossref]

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters 22, 1461–1463 (2010).
[Crossref]

IEEE Transactions on Evolutionary Computation (1)

Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation 3, 124–141 (1999).
[Crossref]

Journal of Computational Physics (1)

W. J. Morokoff and R. E. Caflisch, “Quasi-Monte Carlo integration,” Journal of Computational Physics 122, 218–230 (1995).
[Crossref]

Journal of Global Optimization (2)

J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” Journal of Global Optimization 21, 27–37 (2001).
[Crossref]

Q. Liu, G. Yang, Z. Zhang, and J. Zeng, “Improving the convergence rate of the direct global optimization algorithm,” Journal of Global Optimization 67, 851–872 (2017).
[Crossref]

Journal of Lightwave Technology (1)

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” Journal of Lightwave Technology 33, 901–910 (2015).
[Crossref]

Journal of Optimization Theory and Applications (1)

D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” Journal of Optimization Theory and Applications 79, 157–181 (1993).
[Crossref]

Optics Express (6)

Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Optics Express 22, 18224–18231 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Optics Express 26, 4766–4779 (2018).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Optics Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express 23, 5861–5874 (2015).
[Crossref] [PubMed]

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Optics Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

Scientific Reports (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Scientific Reports 7, 42306 (2017).
[Crossref]

Other (11)

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

A. Ramaswamy, J. Roth, E. Norberg, R. S. Guzzon, J. Shin, J. Imamura, B. Koch, D. Sparacin, G. Fish, B. G. Lee, R. Rimolo-Donadio, C. Baks, A. Rylyakov, J. Proesel, M. Meghelli, and C. Schow, “A WDM 4×28 Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th5B–5.

E. Bernier, P. Dumais, D. J. Goodwill, H. Mehrvar, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, and D. Geng, “Large-scale silicon photonic switch,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2018), pp. Th1J–1.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2018), p. Th4B.5.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

S. Malhouitre, B. Szelag, S. Brision, Q. Wilmart, D. Fowler, C. Dupré, and C. Kopp, “Heterogeneous and multi-level integration on mature 25Gb/s silicon photonic platform,” in “CPMT Symposium Japan (ICSJ), 2017 IEEE,” (IEEE, 2017), pp. 223–226.

C. Baudot, M. Douix, S. Guerber, S. Crémer, N. Vulliet, J. Planchot, R. Blanc, L. Babaud, C. Alonso-Ramos, D. Benedikovich, D. Pérez-Galacho, S. Messaoudène, S. Kerdiles, P. Acosta-Alba, C. Euvrard-Colnat, E. Cassan, D. Marris-Morini, L. Vivien, and F. Boeuf, “Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials,” in “Electron Devices Meeting (IEDM), 2017 IEEE International,” (IEEE, 2017), pp. 34.

Lumerical Inc., http://www.lumerical.com/tcad-products/fdtd/ .

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt . [Online].

J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2015), pp. Th3F–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-section of the SiN-on-Si platform in this work. Target layer dimensions are: tBOX = 2 µm, tBOX = 2 µm, tSi = 300 nm, tetch = 150 nm, σ = 200 nm, tSiN = 600 nm, and tclad = 1 µm. Refractive index at nominal center wavelength 1310 nm are: nSi = 3.507, nSiO2 = 1.447, and nSiN = 1.873. (b) Side view of the geometry parameterization of the 1D uniform bi-layer GC used for 2D FDTD simulation. Layer thicknesses and color scheme correspond to Fig. 1(a). A Gaussian source is launched from the top at angle θ into the grating, and the transmission spectrum is measured at the left output SiN waveguide to the PIC. Grating is periodic, and continues to the right beyond the figure. Units for the geometric variables are in µm, and θ is in degrees. The figure is not to scale. (c) Top view of the focusing bi-layer GC derived from 1D design, drawn to scale, using the color scheme of Fig. 1(a) to indicate material layers and thicknesses. Light coupled into the GC exits the taper into a 840 nm wide SiN waveguide.
Fig. 2
Fig. 2 (a) Convergence of DIRECT towards nominal 1D design. The red dots represent η sampled at each iteration, while the blue line is the best η sampled hitherto. An η of 0.73 at 1316 nm (−1.37 dB) is achieved for a 1D design. (b) Comparison of simulation spectra of the the 1D and focusing design. Focusing the grating directly to a 840 nm SiN waveguide incurs a slight penalty to the coupling efficiency, reducing the IL to −1.5 dB. (c) Fraction of power emitted upwards Tup (green) and back-reflection (blue). (d) Profile of the emitted power by the GC at the chip surface. The exponential decaying behavior is characteristic of a uniform GC. The fiber is optimally positioned at x = 5.83µm, which is approximately at the center of this emission profile.
Fig. 3
Fig. 3 (a)–(d) Sensitivity of the 1D design to (a) x-offset between layers, variations in fill factor for (b) SiN and (c) Si teeth, and variation in thicknesses of (d) SiO2 interlayer spacing, (e) Si teeth layer, (f) SiN teeth layer.
Fig. 4
Fig. 4 (a) Optical micrographs of the fabricated GC test structures and an individual GC. (b) Wafer map of the measured chips, with measured SiO2 interlayer spacing thickness σ (in nm) annotated. The intended value of σ is 200 nm [see Fig. 1(a)]. (c) Measured spectra of the nominal focusing design from samples over the wafer, as indicated in (b). The dotted black line is the simulated transmission spectrum of the focusing design assuming a σ = 200 nm. (d) Comparison of the insertion loss (green) and center wavelength (blue) with the respect to σ between measured (circle markers) and simulated data (dotted lines). A close correspondence is present, with some additional loss for the measured data due to various factors (e.g. lack of planarization at the chip surface, fiber array positioning, etc.). Other variations, such as layer offset and under/over etching of the teeth contribute to the loss and center wavelength variations in the measurement.
Fig. 5
Fig. 5 Measured spectra of geometry variation corners in the chip with interlayer spacing of 206 nm. Measured spectra showing the effects of lithographically defined interlayer offsets in the (a) x-direction and (b) y-direction, as well as variations in the widths of the (c) SiN and (d) Si teeth.

Tables (3)

Tables Icon

Table 1 The top results from coarse sampling

Tables Icon

Table 2 Performance summary of nominal designs from across the wafer [see also Fig. 4(c)].

Tables Icon

Table 3 Comparison of grating couplers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E B W P = η Δ λ 1 d B λ c e n t e r ,

Metrics