Abstract

Distributed feedback lasing and surface plasmon lasing were achieved in a single laser device. The laser cavity consisted of a four-layer structure including two metal films, a grating, and a gain material; the cavity was fabricated by combining interference lithography and metal evaporation. A hollow structure was employed to overcome the Joule losses of the metal film. The total thickness of the multilayer structure was 350 nm. The lasing threshold for this hybrid lasing was decreased significantly owing to the coupling between the SP mode in two metal films and the waveguide mode. The combination of SP lasing and distributed feedback lasing could benefit the design of biosensors, all-optical circuits, and electrically pumped devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable polymer lasers based on metal-dielectric hybrid cavity

Chao Chen, Fei Tong, Fengzhao Cao, Junhua Tong, Tianrui Zhai, and Xinping Zhang
Opt. Express 26(24) 32048-32054 (2018)

Lasing in plasmon-induced transparency nanocavity

Zi-Lan Deng and Jian-Wen Dong
Opt. Express 21(17) 20291-20302 (2013)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
    [Crossref]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  5. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
    [Crossref] [PubMed]
  6. M. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
    [Crossref]
  7. R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
    [Crossref] [PubMed]
  8. J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
    [Crossref] [PubMed]
  9. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
    [Crossref] [PubMed]
  10. A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [Crossref]
  11. X. Li, S. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
    [Crossref]
  12. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
    [Crossref] [PubMed]
  13. S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
    [Crossref]
  14. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
    [Crossref]
  15. G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [Crossref]
  16. M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
    [Crossref]
  17. G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
    [Crossref]
  18. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
    [Crossref]
  19. P. B. Deotare, T. S. Mahony, and V. Bulović, “Ultracompact low-threshold organic laser,” ACS Nano 8(11), 11080–11085 (2014).
    [Crossref] [PubMed]
  20. M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
    [Crossref]
  21. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
    [Crossref] [PubMed]
  22. D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
    [Crossref]
  23. M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
    [Crossref]
  24. P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
    [Crossref]
  25. T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
    [Crossref] [PubMed]
  26. H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
    [Crossref]
  27. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
    [Crossref] [PubMed]
  28. T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
    [Crossref] [PubMed]
  29. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
    [Crossref] [PubMed]
  30. T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
    [Crossref]

2017 (1)

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

2016 (1)

2015 (2)

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

2014 (1)

P. B. Deotare, T. S. Mahony, and V. Bulović, “Ultracompact low-threshold organic laser,” ACS Nano 8(11), 11080–11085 (2014).
[Crossref] [PubMed]

2012 (5)

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (1)

X. Li, S. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

2007 (2)

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
[Crossref] [PubMed]

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

2006 (3)

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[Crossref] [PubMed]

2005 (2)

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

2004 (2)

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

2003 (4)

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

2001 (1)

1998 (1)

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

1996 (2)

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[Crossref] [PubMed]

Alton, J.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Andersson, M. R.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Andrew, P.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Babudri, F.

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Barbieri, S.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Barnes, W.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[Crossref] [PubMed]

Beere, H.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Belkin, M. A.

Berggren, M.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Berleb, S.

Bour, D.

Bradley, D.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Brütting, W.

Bulovic, V.

P. B. Deotare, T. S. Mahony, and V. Bulović, “Ultracompact low-threshold organic laser,” ACS Nano 8(11), 11080–11085 (2014).
[Crossref] [PubMed]

Calligaro, M.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Camposeo, A.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

Cao, F.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

Capasso, F.

Chen, L.

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

Chen, Q.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Chen, S.

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

Cingolani, R.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Co, D. T.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Corzine, S.

Crozier, K.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Crozier, K. B.

Cubukcu, E.

Cunningham, B. T.

Davies, A. G.

de Rossi, A.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Del Carro, P.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

Deotare, P. B.

P. B. Deotare, T. S. Mahony, and V. Bulović, “Ultracompact low-threshold organic laser,” ACS Nano 8(11), 11080–11085 (2014).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dhillon, S.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Diaz-Garcia, M. A.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Diehl, L.

Ding, R.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, J. A.

Fang, H.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Farinola, G.

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Feldmann, J.

Feng, J.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Fromm, D.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Gaal, M.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Gadermaier, C.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Ge, C.

Gigli, G.

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Gombert, A.

Heeger, A. J.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Heliotis, G.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Hide, F.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Höfler, G.

Huang, Y.

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

Huntington, M. D.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Jian, X.

Kaschke, J.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Khanna, S.

Kim, C. H.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Kino, G.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[Crossref] [PubMed]

Klinkhammer, S.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Kumar, A.

X. Li, S. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

Lachab, M.

Lanzani, G.

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

Leising, G.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Lemmer, U.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
[Crossref] [PubMed]

Li, S.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

Li, X.

X. Li, S. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

Linfield, E. H.

List, E.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Liu, X.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Lu, M.

Lu, S.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Ma, D.

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

Ma, R. M.

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

Mahony, T. S.

P. B. Deotare, T. S. Mahony, and V. Bulović, “Ultracompact low-threshold organic laser,” ACS Nano 8(11), 11080–11085 (2014).
[Crossref] [PubMed]

Mappes, T.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Mechau, N.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Mele, E.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

Moderegger, E.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Moerner, W.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Mückl, A. G.

Nalamasu, O.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Naso, F.

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Niu, L.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

Odom, T. W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

Oulton, R. F.

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pei, Q.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Perissinotto, S.

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

Persano, L.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Pisignano, D.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

Plank, H.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Pogantsch, A.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Riechel, S.

Ritchie, D.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Salerno, M.

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[Crossref] [PubMed]

Samuel, I.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Schuck, P.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Schwartz, B. J.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Sirtori, C.

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

Slusher, R.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Song, J.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Sorger, V. J.

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

Stabile, R.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

Stockman, M.

M. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[Crossref]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Sudau, K.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Suh, J. Y.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Sun, H.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Sundaramurthy, A.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Tan, Y.

Timko, A.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Tong, F.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

Turnbull, G.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

Vannahme, C.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Wang, M.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

Wang, Y.

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

Wasielewski, M. R.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Wegener, M.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Wittwer, V.

Wu, X.

Xia, R.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Yang, J.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Yang, R.

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Yin, X.

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

Yu, N.

Yu, S.

X. Li, S. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

Zavelani-Rossi, M.

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

Zhai, T.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

Zhang, D.

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

Zhang, X.

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

Zhang, Z.

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

Zhou, W.

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Zhu, J.

ACS Nano (1)

P. B. Deotare, T. S. Mahony, and V. Bulović, “Ultracompact low-threshold organic laser,” ACS Nano 8(11), 11080–11085 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

H. Fang, R. Ding, S. Lu, J. Yang, X. Zhang, R. Yang, J. Feng, Q. Chen, J. Song, and H. Sun, “Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals,” Adv. Funct. Mater. 22(1), 33–38 (2012).
[Crossref]

Adv. Mater. (1)

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Appl. Phys. Express (1)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Appl. Phys. Lett. (8)

D. Pisignano, L. Persano, R. Cingolani, G. Gigli, F. Babudri, G. Farinola, and F. Naso, “Soft molding lithography of conjugated polymers,” Appl. Phys. Lett. 84(8), 1365–1367 (2004).
[Crossref]

M. Salerno, G. Gigli, M. Zavelani-Rossi, S. Perissinotto, and G. Lanzani, “Effects of morphology and optical contrast in organic distributed feedback lasers,” Appl. Phys. Lett. 90(11), 111110 (2007).
[Crossref]

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006).
[Crossref]

T. Zhai, F. Tong, F. Cao, L. Niu, S. Li, M. Wang, and X. Zhang, “Distributed feedback lasing in a metallic cavity,” Appl. Phys. Lett. 111(11), 111901 (2017).
[Crossref]

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

G. Turnbull, P. Andrew, W. Barnes, and I. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[Crossref]

X. Li, S. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. Beere, and D. Ritchie, “Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,” Appl. Phys. Lett. 87(7), 071107 (2005).
[Crossref]

J. Appl. Phys. (1)

D. Zhang, S. Chen, Y. Huang, Z. Zhang, Y. Wang, and D. Ma, “Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser,” J. Appl. Phys. 117(2), 023106 (2015).
[Crossref]

J. Opt. (1)

M. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[Crossref]

Nano Lett. (3)

R. M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012).
[Crossref] [PubMed]

J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary nonlinear absorption in 3D bowtie nanoantennas,” Nano Lett. 12(1), 269–274 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Nanoscale (1)

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[Crossref] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: A new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Polymer laser based on the proposed plasmonic cavity. (a) Scanning electron microscopy image of the cross-section of the polymer laser in (b). The black arrows indicate corresponding structures between the right and left images. (b) Schematic diagram of the plasmonic cavity. The green arrow denotes the DFB lasing. The yellow-green arrows indicate the SP lasing. The purple arrow corresponds to the pump beam. The angle between the directions of the DFB lasing and the SP lasing is about 10°.
Fig. 2
Fig. 2 The SP lasing and SP-enhanced DFB lasing from the plasmonic cavity. (a) Extinction spectra of the plasmonic cavity at different angles. (b) Photograph of the emission spot from the plasmonic laser. (c) Emission spectra from the plasmonic laser with different pump intensities. (d) The relationship between the output intensity and pump intensity, indicating that the thresholds of SP and DFB lasing are 3.2 μJ/cm2 and 3.5 μJ/cm2, respectively.
Fig. 3
Fig. 3 Electric field distribution of the plasmonic cavity with different Ag film locations and the transmittance simulation. (a) Free-standing membrane polymer DFB laser without the Ag film at 557 nm. (b) Ag film at the bottom of the grating at 557 nm. (c) Ag film at the top of the grating at 557 nm. (d) Ag films at the top and bottom of the grating at 557 nm. (e) Ag films at the top and bottom of the grating at 571 nm. (f) Transmittance simulation of the cavity in (e).
Fig. 4
Fig. 4 Polarization properties of the plasmonic cavity. (a) Schematic of the optical setup for measuring the polarization dependency of the plasmonic laser. (b) Output emission as a function of the pump polarization. (c) Polarization properties of the output emission.

Metrics