Abstract

A new method is proposed and demonstrated for fabricating phase-shifted fiber Bragg gratings (FBGs) using a variable-velocity scanning UV laser beam in combination with a shielded phase mask. The transmission properties of phase-shifted FBGs were analyzed based on coupled-mode theory and a transfer matrix method. The grating is divided into three parts to allow for easier analysis of FBG properties. These segments included a uniform FBG1 and FBG2 which were separated by a shielded section. A novel phase-shifted FBG was fabricated using this method, in which the refractive indices of FBG1 and FBG2 were different. Transmission properties of these phase-shifted FBGs were simulated numerically using MATLAB, and the experimental results and simulated results are in good agreement. In addition to the length and effective refractive index of the shielded section, the phase shift value of a phase-shifted FBG was also found to be dependent on the lengths and effective refractive indices of FBG1 and FBG2. Moreover, we predicted that changing the scanning velocity for fabricating FBG2 would adjust phase shift value, which exhibits a positive linear relationship with the scanning velocity. These results can provide guidelines for fabricating any phase shift value FBGs. This technique is simple, convenient, and may be developed further for use in fabricating novel tunable fiber filters or DFB fiber lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabricating fiber Bragg gratings with two phase masks based on reconstruction-equivalent-chirp technique

Liang Gao, Xiangfei Chen, Jintian Xiong, Shengchun Liu, and Tao Pu
Opt. Express 20(3) 2240-2245 (2012)

Effects of the phase shift split on phase-shifted fiber Bragg gratings

Guillaume Tremblay and Yunlong Sheng
J. Opt. Soc. Am. B 23(8) 1511-1516 (2006)

Realization and optimization of phase-shifted distributed feedback fiber Bragg grating Raman lasers

Sébastien Loranger, Amirhossein Tehranchi, Herbert Winful, and Raman Kashyap
Optica 5(3) 295-302 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).
  2. X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
    [Crossref]
  3. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
    [Crossref]
  4. X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, and J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
    [Crossref] [PubMed]
  5. areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
    [Crossref]
  6. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  7. M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).
  8. H. Qi, Z. Song, S. Li, J. Guo, C. Wang, and G. D. Peng, “Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications,” Opt. Express 21(9), 11309–11314 (2013).
    [Crossref] [PubMed]
  9. M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34(11), 1717–1719 (2009).
    [Crossref] [PubMed]
  10. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the pound-drever-hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  11. F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).
  12. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  13. C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
    [Crossref] [PubMed]
  14. S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
    [Crossref]
  15. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20(20), 2051–2053 (1995).
    [Crossref] [PubMed]
  16. S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
    [Crossref]
  17. J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
    [Crossref] [PubMed]
  18. E. Chehura, S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol. 21(9), 212–216 (2010).
    [Crossref]
  19. Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
    [Crossref] [PubMed]
  20. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
    [Crossref]
  21. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [Crossref] [PubMed]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  23. L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15(8), 1405–1410 (1997).
    [Crossref]
  24. M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1), 251–257 (2000).
    [Crossref]
  25. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [Crossref] [PubMed]
  26. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
    [Crossref]

2017 (2)

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

2016 (1)

A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).

2015 (1)

2014 (2)

M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

2013 (3)

2012 (2)

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

2011 (2)

areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

2010 (1)

E. Chehura, S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

2009 (1)

2008 (2)

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the pound-drever-hall technique,” Opt. Express 16(3), 1945–1950 (2008).
[Crossref] [PubMed]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

2006 (1)

2004 (1)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

2000 (1)

M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1), 251–257 (2000).
[Crossref]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15(8), 1405–1410 (1997).
[Crossref]

1995 (1)

1994 (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

1991 (1)

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

1987 (1)

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Andrés, M. V.

Azaña, J.

Barcelos, S.

Barmenkov, Y. O.

Bayon, F.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Bernage, P.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Butler, J. J.

M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1), 251–257 (2000).
[Crossref]

Chehura, E.

E. Chehura, S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

Chen, X.

Cole, M. J.

Cruz, J. L.

Dai, Y.

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

Deng, Y.

M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).

Douay, M.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Falah, A. A. S.

A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).

Feng, S.

Feng, T.

Fertein, E.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Fujii, T.

Galzerano, G.

Gatti, D.

Georges, T.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Guan, B. O.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

Guo, J.

He, J.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

Hickey, L. M. B.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

Huang, N.

M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).

Ibsen, M.

A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).

James, S. W.

E. Chehura, S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

Janner, D.

Jiang, M.

areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Karanja, J. M.

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

Kudo, Y.

Laming, R. I.

Laporta, P.

Legoubin, S.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Li, H.

Li, M.

M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, and J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[Crossref] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34(11), 1717–1719 (2009).
[Crossref] [PubMed]

Li, Q.

Li, S.

Li, W.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, Z.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
[Crossref] [PubMed]

Liao, C.

Lin, B.

areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Lit, J. W. Y.

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15(8), 1405–1410 (1997).
[Crossref]

Liu, F.

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

Liu, P.

Liu, S.

Liu, Y.

Loh, W. H.

Longhi, S.

Lopez-Amo, M.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

Lopez-Higuera, J. M.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

Malcuit, M. S.

M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1), 251–257 (2000).
[Crossref]

Mokhtar, M. R.

A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).

Niay, P.

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

Ntziachristos, V.

Painchaud, Y.

Pan, W.

Peng, G. D.

Peng, W.

Qi, H.

Quintela, M. A.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Razansky, D.

Ren, W.

Rodriguez, M. A.

M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1), 251–257 (2000).
[Crossref]

Rodriguez-Cobo, L.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

Rosenthal, A.

Rota-Rodrigo, S.

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

Sakuda, K.

Shum, P.

areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Song, Z.

Sun, B.

Tam, H. Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

Tan, S.

Tatam, R. P.

E. Chehura, S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

Tjin, S. C.

areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Torres-Peiró, S.

Wang, C.

Wang, D. N.

Wang, Q.

Wang, Y.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

J. He, Y. Wang, C. Liao, Q. Wang, K. Yang, B. Sun, G. Yin, S. Liu, J. Zhou, and J. Zhao, “Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser,” Opt. Lett. 40(9), 2008–2011 (2015).
[Crossref] [PubMed]

C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
[Crossref] [PubMed]

Wei, L.

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15(8), 1405–1410 (1997).
[Crossref]

Xu, L.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38(21), 4473–4476 (2013).
[Crossref] [PubMed]

Yamada, M.

Yan, F.

Yan, L.

Yang, K.

Yang, M.

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

Yang, T.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

Yao, J.

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, and J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[Crossref] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Yelen, K.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

Yin, G.

Yusoff, Z.

A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).

Zalvidea, D.

Zervas, M. N.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett. 20(20), 2051–2053 (1995).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

Zhang, Z.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

Zhao, J.

Zhong, X.

Zhou, J.

Zhou, X.

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

Zhu, F.

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

Zhu, N.

M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).

Zou, X.

Appl. Opt. (1)

Electron. Lett. (1)

S. Legoubin, E. Fertein, M. Douay, P. Bernage, P. Niay, F. Bayon, and T. Georges, “Formation of moire grating in core of germanosilicate fiber by transverse holographic double exposure method,” Electron. Lett. 27(21), 1945–1947 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 20(5), 161–165 (2014).
[Crossref]

IEEE Photonics J. (2)

F. Zhu, Z. Zhang, C. Liao, Y. Wang, L. Xu, J. He, C. Wang, Z. Li, T. Yang, and Y. Wang, “Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription,” IEEE Photonics J. 9(6), 1–8 (2017).

M. Li, N. Huang, N. Zhu, and Y. Deng, “Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating,” IEEE Photonics J. 6(4), 1–8 (2014).

IEEE Photonics Technol. Lett. (3)

areB. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

A. A. S. Falah, M. R. Mokhtar, Z. Yusoff, and M. Ibsen, “Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain,” IEEE Photonics Technol. Lett. 28(9), 951–954 (2016).

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15(8), 1405–1410 (1997).
[Crossref]

Meas. Sci. Technol. (1)

E. Chehura, S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol. 21(9), 212–216 (2010).
[Crossref]

Opt. Commun. (2)

M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1), 251–257 (2000).
[Crossref]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

Opt. Eng. (1)

X. Zhou, Y. Dai, J. M. Karanja, F. Liu, and M. Yang, “Fabricating phase-shifted fiber Bragg grating by simple postprocessing using femtosecond laser,” Opt. Eng. 56(2), 027108 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The refractive index profile of the phase-shifted FBG along the z direction. Note that the grating period has been exaggerated 935 times for clarity.
Fig. 2
Fig. 2 A schematic diagram of the phase-shifted FBG inscription process.
Fig. 3
Fig. 3 Experimental and simulated transmission spectra of the uniform FBG1 with various scanning lengths L1.
Fig. 4
Fig. 4 Transmission spectra of the phase-shifted FBG with various shielded section lengths.
Fig. 5
Fig. 5 Experimental and simulated transmission spectra of the phase-shifted FBG with various scanning lengths L2.
Fig. 6
Fig. 6 Experimental and simulated transmission spectra of the phase-shifted FBGs with various scanning velocities v2.
Fig. 7
Fig. 7 (a) The variation of phase shift with scanning length L2. (b) The variation of phase shift with scanning velocity v2.
Fig. 8
Fig. 8 Experimental and simulated transmission spectra of the phase-shifted FBG with varying length proportions.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 + δ n e f f ¯ ( 1 + cos ( 2 π Λ z + φ ( z ) ) ) .
[ E + ( 0 ) E - ( 0 ) ] = [ T ] × [ E + ( l ) E - ( l ) ] = [ g h h * g * ] × [ E + ( l ) E - ( l ) ] ,
L e f f = L 0 + L e f f 1 + L e f f 2 ,
L e f f 1 = L 1 R 1 2 a tanh ( R 1 ) , L e f f 2 = L 2 R 2 2 a tan h ( R 2 ) ,
F p = [ e i φ 0 0 e i φ ] ,
φ = 2 π n 0 λ B * L e f f = 2 π n 0 L 0 λ B + n 0 tan h ( π n 1 L 1 / λ B ) n 1 + n 0 tan h ( π n 2 L 2 / λ B ) n 2 .
F = F F B G 1 × F P × F F B G 2 = [ g 1 h 1 h 1 g 1 ] × [ e i φ 0 0 e i φ ] × [ g 2 h 2 h 2 g 2 ] = [ f 11 f 12 f 21 f 22 ] .
t = E + ( l ) E ( 0 ) | E - ( l ) = 0 = 1 f 11 .

Metrics