Abstract

We present an upconversion imaging experiment from the near-infrared to the visible spectrum. Using a dedicated broadband pump laser to increase the number of resolved elements converted in the image we obtain up to 56x64 spatial elements with a 2.7 nm wide pump spectrum, more than 10 times the number of elements accessible with a narrowband laser. Results in terms of field of view, resolution and conversion efficiency are in good agreement with simulations. The computed sensitivity of our experiment favorably compares with direct InGaAs camera detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence

Lichun Meng, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo
Opt. Express 26(19) 24712-24722 (2018)

Upconversion-based lidar measurements of atmospheric CO2

Lasse Høgstedt, Andreas Fix, Martin Wirth, Christian Pedersen, and Peter Tidemand-Lichtenberg
Opt. Express 24(5) 5152-5161 (2016)

Upconversion detection of long-wave infrared radiation from a quantum cascade laser

Yu-Pei Tseng, Christian Pedersen, and Peter Tidemand-Lichtenberg
Opt. Mater. Express 8(5) 1313-1321 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
    [Crossref] [PubMed]
  2. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579–1582 (2015).
    [Crossref] [PubMed]
  3. S. Wolf, T. Trendle, J. Kiessling, J. Herbst, K. Buse, and F. Kühnemann, “Self-gated mid-infrared short pulse upconversion detection for gas sensing,” Opt. Express 25(20), 24459–24468 (2017).
    [Crossref] [PubMed]
  4. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3), 187–210 (2002).
    [Crossref]
  5. J. Midwinter, “Image conversion from 1.6 μm to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
    [Crossref]
  6. J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
    [Crossref]
  7. T. Itabe and J. L. Button, “Application of upconversion detection to pulsed CO2 lidar,” Appl. Opt. 21(13), 2381–2385 (1982).
    [Crossref] [PubMed]
  8. J. Weller and R. Andrews, “Resolution measurements in parametric upconversion of images,” Opto-Electron. 2(3), 171–176 (1970).
    [Crossref]
  9. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  10. J. S. Pelc, P. S. Kuo, O. Slattery, L. Ma, X. Tang, and M. M. Fejer, “Dual-channel, single-photon upconversion detector at 1.3 μm,” Opt. Express 20(17), 19075–19087 (2012).
    [Crossref] [PubMed]
  11. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  12. H. Maestre, A. J. Torregrosa, and J. Capmany, “IR image upconversion under dual-wavelength laser illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
    [Crossref]
  13. A. J. Torregrosa, H. Maestre, and J. Capmany, “Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm,” Opt. Lett. 40(22), 5315–5318 (2015).
    [Crossref] [PubMed]
  14. L. Huot, P. M. Moselund, P. Tidemand-Lichtenberg, L. Leick, and C. Pedersen, “Upconversion imaging using an all-fiber supercontinuum source,” Opt. Lett. 41(11), 2466–2469 (2016).
    [Crossref] [PubMed]
  15. L. M. Kehlet, N. Sanders, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared hyperspectral upconversion imaging using spatial object translation,” Opt. Express 23(26), 34023–34028 (2015).
    [Crossref] [PubMed]
  16. H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, and J. Capmany, “IR-to-visible image upconverter under nonlinear crystal thermal gradient operation,” Opt. Express 26(2), 1133–1144 (2018).
    [Crossref] [PubMed]
  17. M. A. Albota and B. S. Robinson, “Photon-counting 1.55 µm optical communications with pulse-position modulation and a multimode upconversion single-photon receiver,” Opt. Lett. 35(15), 2627–2629 (2010).
    [Crossref] [PubMed]
  18. L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
    [Crossref] [PubMed]
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  20. G. P. Agrawal, Nonlinear fiber optics (Academic, 2007).
  21. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  22. G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
    [Crossref] [PubMed]
  23. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
    [Crossref]
  24. J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
    [Crossref]
  25. R. Demur, A. Grisard, L. Morvan, E. Lallier, N. Treps, and C. Fabre, “High sensitivity narrowband wavelength mid-infrared detection at room temperature,” Opt. Lett. 42(10), 2006–2009 (2017).
    [Crossref] [PubMed]
  26. C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
    [Crossref] [PubMed]

2018 (2)

2017 (2)

2016 (3)

2015 (3)

2014 (1)

2012 (3)

J. S. Pelc, P. S. Kuo, O. Slattery, L. Ma, X. Tang, and M. M. Fejer, “Dual-channel, single-photon upconversion detector at 1.3 μm,” Opt. Express 20(17), 19075–19087 (2012).
[Crossref] [PubMed]

J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

2010 (1)

2002 (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3), 187–210 (2002).
[Crossref]

1997 (2)

1991 (1)

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
[Crossref] [PubMed]

1982 (1)

1970 (1)

J. Weller and R. Andrews, “Resolution measurements in parametric upconversion of images,” Opto-Electron. 2(3), 171–176 (1970).
[Crossref]

1968 (2)

J. Midwinter, “Image conversion from 1.6 μm to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[Crossref]

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
[Crossref] [PubMed]

Albota, M. A.

Andrews, R.

J. Weller and R. Andrews, “Resolution measurements in parametric upconversion of images,” Opto-Electron. 2(3), 171–176 (1970).
[Crossref]

Arisholm, G.

Buse, K.

Button, J. L.

Capmany, J.

Dam, J. S.

Demur, R.

Dou, X.

Fabre, C.

Fejer, M.

J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Fejer, M. M.

Fernández-Pousa, C. R.

Fix, A.

Grisard, A.

Herbst, J.

Høgstedt, L.

Hu, Q.

Huot, L.

Itabe, T.

Jia, X.

Jundt, D. H.

Kehlet, L. M.

Kiessling, J.

Kühnemann, F.

Kuo, P. S.

Lallier, E.

Leick, L.

Ma, L.

Maestre, H.

Meng, L.

Midwinter, J.

J. Midwinter, “Image conversion from 1.6 μm to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[Crossref]

Morvan, L.

Moselund, P. M.

Pan, J. W.

Pan, J.-W.

J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Pedersen, C.

Pelc, J.

J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Pelc, J. S.

Robinson, B. S.

Rodrigo, P. J.

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3), 187–210 (2002).
[Crossref]

Sanders, N.

Shangguan, M.

Shentu, G.

Shentu, G.-L.

J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Slattery, O.

Tang, X.

Tidemand-Lichtenberg, P.

Torregrosa, A. J.

Trendle, T.

Treps, N.

Wang, C.

Warner, J.

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[Crossref]

Weller, J.

J. Weller and R. Andrews, “Resolution measurements in parametric upconversion of images,” Opto-Electron. 2(3), 171–176 (1970).
[Crossref]

Wirth, M.

Wolf, S.

Xia, H.

Xia, X.

Zhang, J.

Zhang, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Midwinter, “Image conversion from 1.6 μm to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[Crossref]

J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett. 13(10), 360–362 (1968).
[Crossref]

IEEE Photonics J. (1)

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR image upconversion under dual-wavelength laser illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3), 187–210 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Express (7)

J. S. Pelc, P. S. Kuo, O. Slattery, L. Ma, X. Tang, and M. M. Fejer, “Dual-channel, single-photon upconversion detector at 1.3 μm,” Opt. Express 20(17), 19075–19087 (2012).
[Crossref] [PubMed]

C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
[Crossref] [PubMed]

S. Wolf, T. Trendle, J. Kiessling, J. Herbst, K. Buse, and F. Kühnemann, “Self-gated mid-infrared short pulse upconversion detection for gas sensing,” Opt. Express 25(20), 24459–24468 (2017).
[Crossref] [PubMed]

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, and J. Capmany, “IR-to-visible image upconverter under nonlinear crystal thermal gradient operation,” Opt. Express 26(2), 1133–1144 (2018).
[Crossref] [PubMed]

L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
[Crossref] [PubMed]

L. M. Kehlet, N. Sanders, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared hyperspectral upconversion imaging using spatial object translation,” Opt. Express 23(26), 34023–34028 (2015).
[Crossref] [PubMed]

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Opto-Electron. (1)

J. Weller and R. Andrews, “Resolution measurements in parametric upconversion of images,” Opto-Electron. 2(3), 171–176 (1970).
[Crossref]

Phys. Rev. A (2)

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
[Crossref] [PubMed]

J. Pelc, G.-L. Shentu, Q. Zhang, M. Fejer, and J.-W. Pan, “Up-conversion of optical signals with multi-longitudinal-mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear fiber optics (Academic, 2007).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Normalized conversion efficiency as a function of the incident signal angle at λs = 1563 nm for different pump wavelengths. (a) λp = 1063 nm, (b) λp = 1063.36 nm, (c) λp = 1063.72 nm and sketch of the corresponding quasi-phase matching conditions to the right to the maximum of conversion efficiency.
Fig. 2
Fig. 2 Image simulation results using the pattern of a 1951 USAF resolution target (a) narrowband pump spectra, (b) 1 nm wide pump spectra, (c) 2 nm wide spectra, (d) 2.7 nm wide spectra.
Fig. 3
Fig. 3 Experimental setup used for upconversion imaging. L1 and L2 are lenses, DM1 and DM2 are dichroic mirrors.
Fig. 4
Fig. 4 Layout of the wide spectrum home-made laser. Lcoll1, Lcoll2, L3 and L4 are lenses and BPF a band-pass filter.
Fig. 5
Fig. 5 Different spectra obtained with the home-made pump laser and used for imaging. The peak pump power is 320 W in both cases (a) 1 nm wide spectrum, (b) 2.7 nm wide spectrum.
Fig. 6
Fig. 6 Upconversion results. Lines (1) and (2) are two different positions on the resolution target. (a) Images obtained with the narrowband pump laser and 1.4 kW peak pump power. (b) Images obtained with the home-made pump laser with the spectrum of 1 nm wide and 320 W peak pump power. (c) Images obtained with the home-made pump laser with the spectrum of 2.7 nm and 320 W peak pump power.
Fig. 7
Fig. 7 Experimental MTF measured on upconverted images. Blue dots represent the MTF in the vertical direction. Red triangles represent the MTF in the horizontal direction. Lines represent the corresponding simulation results.
Fig. 8
Fig. 8 Conversion efficiency as a function of peak pump power for a focalized gaussian signal beam. Red dots stand for experimental data and blue line for simulations.
Fig. 9
Fig. 9 Numerical results of the field of view of the upconverter for different spectral widths of the pump, where the conversion efficiency is given as a function of the incoming signal angle. In red dotted line, narrowband spectrum; in blue dashed line, 1 nm pump spectrum and in green solid line, 2.7 nm pump spectrum.
Fig. 10
Fig. 10 Field of view and conversion efficiency for a 320 W peak pump power and different pump spectrum. In red dotted line, narrowband spectrum; in blue dashed line 1 nm pump spectrum and in green solid line 2.7 nm pump spectrum.

Tables (2)

Tables Icon

Table 1 Field of view and number of spatial elements resolved

Tables Icon

Table 2 Experimental conversion efficiency and sensitivity

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ω s + ω p = ω c
Δ k = k s + k p k c + k QPM = 0
ηsin c 2 ( Δ k z L 2 )
Δ k z =δ k p δ k c + k s 2 ( k s k c 1 ) θ s 2
θ s,ext = λ s λ p 2 n c ( 1 α c ) n p ( 1 α p ) λ s n s λ p n p δ λ p
2Δ λ p = 2.78 πL λ p 2 n c ( 1 α c ) n p ( 1 α p )
E c z = 2i ω c 2 d eff k c c 2 E s E p e iΔkz + i 2 k c ( 2 E c x 2 + 2 E c y 2 )
E s z = 2i ω s 2 d eff k s c 2 E c E p * e iΔkz + i 2 k s ( 2 E s x 2 + 2 E s y 2 )
E p z = 2i ω p 2 d eff k p c 2 E c E s * e iΔkz + i 2 k p ( 2 E p x 2 + 2 E p y 2 )
γ= f 2 λ c f 1 λ s 0.5

Metrics