Abstract

A multi-channel reception scheme that allows each node to receive an arbitrary set of wavelengths simultaneously (i.e., collision-free) is proposed for optical interconnects. The proposed scheme only needs to use a few receivers and fixed-wavelength filters that are designed based on error-control coding theory. Experiments with up to four channel collision-free reception units are carried out to demonstrate the feasibility of the proposed scheme.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passive Optical Interconnects Based on Cascading Wavelength Routing Devices for Datacenters: A Cross-Layer Perspective

Xuezhi Hong, Yi Yang, Yu Gong, and Jiajia Chen
J. Opt. Commun. Netw. 9(4) C45-C53 (2017)

Medium Access Control Protocol and Resource Allocation for Passive Optical Interconnects

Xiaoman Shen, Sailing He, and Jiajia Chen
J. Opt. Commun. Netw. 9(7) 555-562 (2017)

High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Efstratios Skafidas, and Kamal Alameh
Opt. Express 21(25) 31166-31175 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
    [Crossref]
  2. C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: Recent trends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
    [Crossref]
  3. M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
    [Crossref]
  4. Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
    [Crossref]
  5. Y. Gong, X. Hong, Y. Lu, S. He, and J. Chen, “Passive optical interconnects at top of the rack: Offering high energy efficiency for datacenters,” Opt. Express 23(6), 7957–7970 (2015).
    [Crossref] [PubMed]
  6. X. Hong, Y. Gong, Y. Yang, and J. Chen, “AWG based passive optical interconnects for datacenters,” in Proceedings of Photonic Networks and Devices, (2016), NeTu1C.3.
  7. T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).
  8. R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.
  9. R. Murano and M. J. L. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proceedings of ECOC, (2012).
    [Crossref]
  10. Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
    [Crossref]
  11. G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications (New York: Springer, 1981).
  12. E. Agrell, “Tables of binary block codes,” online: http://codes.se/bounds .
  13. E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary codes,” IEEE Trans. Inf. Theory 47(7), 3004–3006 (2001).
    [Crossref]
  14. M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes.” Online available at http://www.codetables.de .
  15. J. Networks, Understanding Pre-FEC BER Monitoring and BER Thresholds,” https://www.juniper.net/documentation/en_US/junos/topics/concept/otn-signal-degrade-monitoring-understanding.html

2017 (1)

T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).

2015 (2)

Y. Gong, X. Hong, Y. Lu, S. He, and J. Chen, “Passive optical interconnects at top of the rack: Offering high energy efficiency for datacenters,” Opt. Express 23(6), 7957–7970 (2015).
[Crossref] [PubMed]

Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
[Crossref]

2014 (1)

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

2013 (1)

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: Recent trends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

2012 (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

2001 (1)

E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary codes,” IEEE Trans. Inf. Theory 47(7), 3004–3006 (2001).
[Crossref]

Agrell, E.

E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary codes,” IEEE Trans. Inf. Theory 47(7), 3004–3006 (2001).
[Crossref]

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Aleksic, S.

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

Cahill, M. J. L.

R. Murano and M. J. L. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proceedings of ECOC, (2012).
[Crossref]

Casoni, M.

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

Chen, J.

Y. Gong, X. Hong, Y. Lu, S. He, and J. Chen, “Passive optical interconnects at top of the rack: Offering high energy efficiency for datacenters,” Opt. Express 23(6), 7957–7970 (2015).
[Crossref] [PubMed]

Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
[Crossref]

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Cheng, Y.

Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
[Crossref]

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Djupsjoebacka, A.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Feng, Z.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Fiorani, M.

Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
[Crossref]

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

Fu, S.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Ge, M.

T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).

Gong, Y.

He, S.

Hong, X.

Y. Gong, X. Hong, Y. Lu, S. He, and J. Chen, “Passive optical interconnects at top of the rack: Offering high energy efficiency for datacenters,” Opt. Express 23(6), 7957–7970 (2015).
[Crossref] [PubMed]

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Hu, W.

T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).

Jacobsen, G.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Kachris, C.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: Recent trends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Kanonakis, K.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: Recent trends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

Lee, T.

T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).

Lin, R.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Liu, D.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Lu, Y.

Y. Gong, X. Hong, Y. Lu, S. He, and J. Chen, “Passive optical interconnects at top of the rack: Offering high energy efficiency for datacenters,” Opt. Express 23(6), 7957–7970 (2015).
[Crossref] [PubMed]

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Murano, R.

R. Murano and M. J. L. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proceedings of ECOC, (2012).
[Crossref]

Ozolins, O.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Pang, X.

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Popov, S.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Schatz, R.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Tang, M.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Tomkos, I.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: Recent trends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Udalcovs, A.

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

Vardy, A.

E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary codes,” IEEE Trans. Inf. Theory 47(7), 3004–3006 (2001).
[Crossref]

Westergren, U.

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

Wosinska, L.

Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
[Crossref]

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

Ye, T.

T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).

Zeger, K.

E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary codes,” IEEE Trans. Inf. Theory 47(7), 3004–3006 (2001).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

IEEE Commun. Lett. (2)

M. Fiorani, S. Aleksic, M. Casoni, L. Wosinska, and J. Chen, “Energy-efficient elastic optical interconnect architecture for data centers,” IEEE Commun. Lett. 18(9), 1531–1534 (2014).
[Crossref]

Y. Cheng, M. Fiorani, L. Wosinska, and J. Chen, “Reliable and cost efficient passive optical interconnects for data centers,” IEEE Commun. Lett. 19(11), 1913–1916 (2015).
[Crossref]

IEEE Commun. Mag. (1)

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: Recent trends and future challenges,” IEEE Commun. Mag. 51(9), 39–45 (2013).
[Crossref]

IEEE Trans. Cloud Comput. (1)

T. Ye, T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnection for large-scale data center networks,” IEEE Trans. Cloud Comput. 99, 1 (2017).

IEEE Trans. Inf. Theory (1)

E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary codes,” IEEE Trans. Inf. Theory 47(7), 3004–3006 (2001).
[Crossref]

Opt. Express (1)

Other (8)

X. Hong, Y. Gong, Y. Yang, and J. Chen, “AWG based passive optical interconnects for datacenters,” in Proceedings of Photonic Networks and Devices, (2016), NeTu1C.3.

M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes.” Online available at http://www.codetables.de .

J. Networks, Understanding Pre-FEC BER Monitoring and BER Thresholds,” https://www.juniper.net/documentation/en_US/junos/topics/concept/otn-signal-degrade-monitoring-understanding.html

R. Lin, X. Pang, O. Ozolins, Z. Feng, A. Djupsjoebacka, U. Westergren, R. Schatz, G. Jacobsen, M. Tang, S. Fu, D. Liu, S. Popov, and J. Chen, “Experimental Validation of Scalability Improvement for Passive Optical Interconnect by Implementing Digital Equalization,” in Proceedings of ECOC, (2016), VDE.

R. Murano and M. J. L. Cahill, “Low Cost Tunable Receivers for Wavelength Agile PONs,” in Proceedings of ECOC, (2012).
[Crossref]

Y. Lu, E. Agrell, X. Pang, O. Ozolins, X. Hong, R. Lin, Y. Cheng, A. Udalcovs, S. Popov, G. Jacobsen, and J. Chen, “Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects,” in Proceedings of ECOC, (2017).
[Crossref]

G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications (New York: Springer, 1981).

E. Agrell, “Tables of binary block codes,” online: http://codes.se/bounds .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A possible collision that could occur at reception in an AWG-based POI. WTT: wavelength tunable transmitter; Rx: receiver.
Fig. 2
Fig. 2 The proposed multi-wavelength reception scheme.
Fig. 3
Fig. 3 Matrix recovery for M simultaneously arrived signals.
Fig. 4
Fig. 4 One example: four filters for 15 wavelengths’ interconnection.
Fig. 5
Fig. 5 Cases with three signals arrived simultaneously: (a) A successful case: d3, d7, and d11 arrive at the same time; (b) A failed case: d3, d8, and d11 arrive at the same time.
Fig. 6
Fig. 6 Relations from coding theory among the numbers of required filters F, wavelengths N, and simultaneously received signals M.
Fig. 7
Fig. 7 F vs. N for M = 2 and 3.
Fig. 8
Fig. 8 An improved filter matrix for F = 4, N = 10 and M = 3.
Fig. 9
Fig. 9 BER vs. received optical power: (a) without any equalization and (b) optimized.

Metrics