Abstract

Sub-wavelength gratings (SWG) have shown much promise for applications such as lightweight high bandwidth reflectors, polarising filters and focusing lenses. Unfortunately, grating performance may be rapidly degraded through variability in grating dimensions. We demonstrate, in particular, how an error in depth of etch can be detrimental to the performance of zero contrast grating reflectors. We mitigate the impact of this fabrication error through the introduction of an etch stop layer and in so doing we experimentally realise a high bandwidth reflector based on this modified structure. Another common fabrication error is variation in the duty-cycle of fabricated gratings. This duty-cycle variation can weaken grating performance, however we demonstrate that grating designs that exhibit tolerance to duty-cycle fluctuation can be identified through simulation. Finally, we discuss the impact of lateral etching and the resulting sidewall concavity. We present our approach for numerically predicting the spectral response from such a grating and also for convenience we outline an approach for quickly approximating grating performance. Good agreement is observed between these numerical predictions and measurements made on a HCG with concave sidewalls.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

Realization of high-contrast gratings operating at 10  μm

Brian Hogan, Stephen P. Hegarty, Liam Lewis, Javier Romero-Vivas, Tomasz J. Ochalski, and Guillaume Huyet
Opt. Lett. 41(21) 5130-5133 (2016)

Sub-wavelength GaN-based membrane high contrast grating reflectors

Tzeng Tsong Wu, Yu Cheng Syu, Shu Hsien Wu, Wei Ting Chen, Tien Chang Lu, Shing Chung Wang, Hai Pang Chiang, and Din Ping Tsai
Opt. Express 20(18) 20551-20557 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
    [Crossref]
  2. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
    [Crossref] [PubMed]
  3. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888–10895 (2012).
    [Crossref] [PubMed]
  4. R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34, 8106–8109 (1995).
    [Crossref] [PubMed]
  5. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700–702 (1998).
    [Crossref]
  6. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref] [PubMed]
  7. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
    [Crossref]
  8. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
    [Crossref]
  9. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: A coupled bloch-mode insight,” J. Lightwave Technol. 24, 2442 (2006).
    [Crossref]
  10. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).
    [Crossref]
  11. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
    [Crossref] [PubMed]
  12. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
    [Crossref] [PubMed]
  13. M. Niraula and R. Magnusson, “Unpolarized resonance grating reflectors with 44% fractional bandwidth,” Opt. Lett. 41, 2482–2485 (2016).
    [Crossref] [PubMed]
  14. S. Learkthanakhachon, A. Taghizadeh, G. C. Park, K. Yvind, and I.-S. Chung, “Hybrid iii–v/soi resonant cavity enhanced photodetector,” Opt. Express 24, 16512–16519 (2016).
    [Crossref] [PubMed]
  15. B. Hogan, S. P. Hegarty, L. Lewis, J. Romero-Vivas, T. J. Ochalski, and G. Huyet, “Realization of high-contrast gratings operating at 10 μm,” Opt. Lett. 41, 5130–5133 (2016).
    [Crossref] [PubMed]
  16. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [Crossref]
  17. M. G. Moharam, T. K. Gaylord, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [Crossref]
  18. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for tm polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [Crossref]
  19. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  20. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
    [Crossref] [PubMed]
  21. E. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  22. J. W. Yoon, Y. H. Ko, K. J. Lee, R. Magnusson, and Manoj Niraula, “Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705(2016).

2016 (4)

2014 (1)

2012 (3)

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888–10895 (2012).
[Crossref] [PubMed]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).
[Crossref]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

2010 (3)

2009 (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

2008 (1)

2006 (1)

2004 (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[Crossref] [PubMed]

1998 (1)

1996 (1)

1995 (3)

Beausoleil, R. G

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
[Crossref]

Brundrett, D. L.

Chang-Hasnain, C. J.

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888–10895 (2012).
[Crossref] [PubMed]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).
[Crossref]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref] [PubMed]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
[Crossref] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Chase, C.

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Chavel, P.

Chung, I.-S.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Ding, Y.

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
[Crossref]

Gaylord, T. K.

Glytsis, E. N.

Grann, E. B.

Hegarty, S. P.

Hogan, B.

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Hugonin, J. P.

Huyet, G.

Karagodsky, V.

Ko, Y. H.

J. W. Yoon, Y. H. Ko, K. J. Lee, R. Magnusson, and Manoj Niraula, “Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705(2016).

Lalanne, P.

Learkthanakhachon, S.

Lee, K. J.

J. W. Yoon, Y. H. Ko, K. J. Lee, R. Magnusson, and Manoj Niraula, “Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705(2016).

Lewis, L.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Lu, F.

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Moharam, M. G.

Morris, G. M.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Niraula, M.

Niraula, Manoj

J. W. Yoon, Y. H. Ko, K. J. Lee, R. Magnusson, and Manoj Niraula, “Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705(2016).

Ochalski, T. J.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Park, G. C.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
[Crossref]

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Pommet, D. A.

Romero-Vivas, J.

Sedgwick, F. G.

Shokooh-Saremi, M.

Taghizadeh, A.

Wang, S. S.

Yang, W.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).
[Crossref]

Yoon, J. W.

J. W. Yoon, Y. H. Ko, K. J. Lee, R. Magnusson, and Manoj Niraula, “Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705(2016).

Yvind, K.

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Adv. Opt. Photonics (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).
[Crossref]

Appl. Opt. (1)

Computer Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (3)

Nat. Photonics (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (1)

J. W. Yoon, Y. H. Ko, K. J. Lee, R. Magnusson, and Manoj Niraula, “Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705(2016).

Other (1)

E. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of ZCG structure.(b) Schematic diagram of ES-ZCG structure. (c) Schematic diagram of HCG structure.
Fig. 2
Fig. 2 (a) Continuous bandwidth as a function of thicknesses dg and dh for a duty-cycle of 64%. Colorbar shows bandwidth in μm (b) Spectral response for target etch depth, 100 nm over-etch and 100 nm under-etch.
Fig. 3
Fig. 3 (a) Spectral response of grating for various etch-stop layer refractive index values.(b) Spectral response of grating for various etch-stop layer extinction coefficient values (imaginary part of n). (c) Spectral response of grating with an etch-stop layer refractive index of 1.5. (d) Spectral response of grating for various Zinc Selenide (ZnSe) etch-stop layer thicknesses and an optimised grating for a 100 nm etch-stop layer.
Fig. 4
Fig. 4 (a) Contour plot of R>0.97 showing grating design which is tolerant to duty-cycle variation. (b) Contour plot showing duty-cycle variation sensitive design. (c) Contour plot showing high duty-cycle tolerance when reflectivity bandwidth requirements are relaxed.
Fig. 5
Fig. 5 SEM image of fabricated ES-ZCG with Etch-Stop layer.
Fig. 6
Fig. 6 (a) Experimental setup for reflectivity measurement using a Long infrared (LIR) laser and detector. (b) Theoretically predicted and experimentally measured spectral response of grating shown in Fig. 5.
Fig. 7
Fig. 7 (a) SEM image showing the concave grating profile of a HCG resulting from lateral etch due to etch time being too long. (b) Simulated vs measured reflectivity for HCG with concave sidewalls. Target grating parameter set (green), simulated concave sidewalls (blue), simulated averaged duty-cycle (purple) are compared to the measured reflectivity (red).

Metrics