Abstract

The creation of artificial structures with very narrow spectral features in the terahertz range has been a long-standing goal, as they can enable many important applications. Unlike in the visible and infrared, where compact dielectric resonators can readily achieve a quality factor (Q) of 106, terahertz resonators with a Q of 103 are considered heroic. Here, we describe a new approach to this challenging problem, inspired by the phenomenon of extraordinary optical transmission (EOT) in 1D structures. In the well-studied EOT problem, a complex spectrum of resonances can be observed in transmission through a mostly solid metal structure. However, these EOT resonances can hardly exhibit extremely high Q, even in a perfect structure with lossless components. In contrast, we show that the inverse structure, a periodic array of very thin metal plates separated by air gaps, can exhibit non-trivial bound states in the continuum (BICs) reflection resonances, with arbitrarily high Q, and with peak reflectivity approaching 100% even for a vanishingly small metal filling fraction. Our analytical predictions are supported by numerical simulations, and also agree well with our experimental measurements. This configuration offers a new approach to achieving ultra-narrow optical resonances in the terahertz range, as well as a new experimentally accessible configuration for studying BICs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide

Evgeni A. Bezus, Dmitry A. Bykov, and Leonid L. Doskolovich
Photon. Res. 6(11) 1084-1093 (2018)

Optical bound states in slotted high-contrast gratings

Yifei Wang, Jiming Song, Liang Dong, and Meng Lu
J. Opt. Soc. Am. B 33(12) 2472-2479 (2016)

Bound states in the continuum on periodic structures: perturbation theory and robustness

Lijun Yuan and Ya Yan Lu
Opt. Lett. 42(21) 4490-4493 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref] [PubMed]
  2. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
    [Crossref]
  3. J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).
  4. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
    [Crossref]
  5. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
    [Crossref] [PubMed]
  6. B. Midya and V. V. Konotop, “Coherent-perfect-absorber and laser for bound states in a continuum,” Opt. Lett. 43(3), 607–610 (2018).
    [Crossref] [PubMed]
  7. Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs,” Sensors (Basel) 17(8), 1861 (2017).
    [Crossref] [PubMed]
  8. S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
    [Crossref]
  9. J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
    [Crossref]
  10. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [Crossref]
  11. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31(3), 213–222 (1941).
    [Crossref]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  14. K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24(25), 28221–28227 (2016).
    [Crossref] [PubMed]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [Crossref]
  16. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
    [Crossref]
  17. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
    [Crossref] [PubMed]
  18. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
    [Crossref]
  19. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [Crossref] [PubMed]
  20. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [Crossref]
  21. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
    [Crossref]
  22. J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
    [Crossref]
  23. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, Ch. Lienau, and D. S. Kim, “Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory,” Opt. Express 14(26), 12637–12643 (2006).
    [Crossref] [PubMed]
  24. O. Mata-Mendez, J. Avendaño, and F. Chavez-Rivas, “Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization,” J. Opt. Soc. Am. A 23(8), 1889–1896 (2006).
    [Crossref] [PubMed]
  25. P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
    [Crossref]
  26. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
    [Crossref] [PubMed]
  27. W. E. Kock, “Metal-lens antennas,” Proc. IRE. 34, 828–836 (1946).
  28. W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
    [Crossref]
  29. F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,” IEEE Trans. Antenn. Propag. 150, 470–476 (2003).
  30. R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
    [Crossref] [PubMed]
  31. R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
    [Crossref] [PubMed]
  32. R. Gómez-Medina, M. Laroche, and J. J. Sáenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14(9), 3730–3737 (2006).
    [Crossref] [PubMed]
  33. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref] [PubMed]
  34. H. Lochbihler and R. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32(19), 3459–3465 (1993).
    [Crossref] [PubMed]
  35. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
    [Crossref]
  36. X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Total absorption by degenerate critical coupling,” Opt. Express 25, 24658 (2017).
    [Crossref] [PubMed]
  37. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref] [PubMed]
  38. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A Gen. Phys. 32(6), 3231–3242 (1985).
    [Crossref] [PubMed]
  39. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” ‎,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  40. P. U. Jepsen, D. G. Cooke, and M. Kock, “Terahertz spectroscopy and imaging – morden techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]

2018 (2)

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

B. Midya and V. V. Konotop, “Coherent-perfect-absorber and laser for bound states in a continuum,” Opt. Lett. 43(3), 607–610 (2018).
[Crossref] [PubMed]

2017 (4)

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Total absorption by degenerate critical coupling,” Opt. Express 25, 24658 (2017).
[Crossref] [PubMed]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs,” Sensors (Basel) 17(8), 1861 (2017).
[Crossref] [PubMed]

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
[Crossref] [PubMed]

2016 (3)

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24(25), 28221–28227 (2016).
[Crossref] [PubMed]

2014 (2)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

2013 (1)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Kock, “Terahertz spectroscopy and imaging – morden techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (1)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

2006 (4)

2005 (1)

2004 (3)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” ‎,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (2)

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,” IEEE Trans. Antenn. Propag. 150, 470–476 (2003).

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

2001 (1)

2000 (2)

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1993 (1)

1986 (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[Crossref]

1985 (1)

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A Gen. Phys. 32(6), 3231–3242 (1985).
[Crossref] [PubMed]

1984 (1)

W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
[Crossref]

1983 (1)

1941 (1)

1929 (1)

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Alexander, R. W.

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Avendaño, J.

Backus, S.

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Bardou, N.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Cabrini, S.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

Catrysse, P. B.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Chan, C. P.

W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
[Crossref]

Chavel, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

Chavez-Rivas, F.

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
[Crossref] [PubMed]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Kock, “Terahertz spectroscopy and imaging – morden techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Crick, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

Depine, R.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Fan, S.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” ‎,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Fano, U.

Foley, J. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Friedrich, H.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A Gen. Phys. 32(6), 3231–3242 (1985).
[Crossref] [PubMed]

Gallee, F.

F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,” IEEE Trans. Antenn. Propag. 150, 470–476 (2003).

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gómez-Medina, R.

Greffet, J.

Grischkowsky, D.

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Haïdar, R.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Hibbins, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

Hirose, K.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Hugonin, J. P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

Jeoung, S. C.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Kock, “Terahertz spectroscopy and imaging – morden techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Karl, N.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Kim, D. S.

Kock, M.

P. U. Jepsen, D. G. Cooke, and M. Kock, “Terahertz spectroscopy and imaging – morden techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kock, W. E.

W. E. Kock, “Metal-lens antennas,” Proc. IRE. 34, 828–836 (1946).

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Konotop, V. V.

Kurosaka, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Lalanne, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Lamberti, A.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Landrac, G.

F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,” IEEE Trans. Antenn. Propag. 150, 470–476 (2003).

Laroche, M.

Lawrence, C. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Lee, J. W.

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, E. W. P.

W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
[Crossref]

Liang, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Lienau, Ch.

Liu, X.

Liu, Y.

Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs,” Sensors (Basel) 17(8), 1861 (2017).
[Crossref] [PubMed]

Lochbihler, H.

Long, L. L.

Lu, P. Y.

Marquier, F.

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[Crossref]

Masullo, M.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Mata-Mendez, O.

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[Crossref]

Mendis, R.

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
[Crossref] [PubMed]

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24(25), 28221–28227 (2016).
[Crossref] [PubMed]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[Crossref] [PubMed]

Midya, B.

Ming, X.

Mittleman, D. M.

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
[Crossref] [PubMed]

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24(25), 28221–28227 (2016).
[Crossref] [PubMed]

Mocella, V.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Nagai, M.

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
[Crossref] [PubMed]

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Ney, M. M.

F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,” IEEE Trans. Antenn. Propag. 150, 470–476 (2003).

Noda, S.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Ordal, M. A.

Padilla, W. J.

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Pardo, F.

Park, D. J.

Park, Q. H.

Pelouard, J.

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Penzo, E.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Phillips, J. D.

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Platzman, P. M.

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[Crossref]

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Reichel, K. S.

Rendina, I.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Rodier, J. C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

Romano, S.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Sáenz, J. J.

Sambles, J. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

Sauvan, C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

Seo, M. A.

Shen, J. T.

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[Crossref]

Shen, J.-T.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Shuter, W. L.

W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Sugiyama, T.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” ‎,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Sun, L.

Sun, Y.

Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs,” Sensors (Basel) 17(8), 1861 (2017).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Veronis, G.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

von Neumann, J.

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Wang, Y.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” ‎,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Ward, C. A.

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Went, H. E.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

Wigner, E.

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Wintgen, D.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A Gen. Phys. 32(6), 3231–3242 (1985).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Yeung, A. K. C.

W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
[Crossref]

Young, S. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Zhang, W.

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
[Crossref] [PubMed]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Zhou, W.

Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs,” Sensors (Basel) 17(8), 1861 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77(18), 2789–2791 (2000).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” ‎,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

W. L. Shuter, C. P. Chan, E. W. P. Li, and A. K. C. Yeung, “A metal plate Fresnel lens for 4 GHz satellite TV reception,” IEEE Trans. Antenn. Propag. 32(3), 306–307 (1984).
[Crossref]

F. Gallee, G. Landrac, and M. M. Ney, “Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies,” IEEE Trans. Antenn. Propag. 150, 470–476 (2003).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Kock, “Terahertz spectroscopy and imaging – morden techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Materials (Basel) (1)

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials (Basel) 11(4), 526 (2018).
[Crossref]

Nat. Photonics (1)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Nature (3)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Opt. Acta (Lond.) (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[Crossref]

Opt. Commun. (1)

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A Gen. Phys. 32(6), 3231–3242 (1985).
[Crossref] [PubMed]

Phys. Rev. B (4)

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[Crossref]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003).
[Crossref]

J. T. Shen and P. M. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70(3), 035101 (2004).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89(16), 165111 (2014).
[Crossref]

Phys. Rev. Lett. (3)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Phys. Z. (1)

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Sci. Rep. (2)

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

R. Mendis, M. Nagai, W. Zhang, and D. M. Mittleman, “Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region,” Sci. Rep. 7(1), 5909 (2017).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Sensors (Basel) (1)

Y. Liu, W. Zhou, and Y. Sun, “Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs,” Sensors (Basel) 17(8), 1861 (2017).
[Crossref] [PubMed]

Other (1)

W. E. Kock, “Metal-lens antennas,” Proc. IRE. 34, 828–836 (1946).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry of the scattering problem with an array of thin metal plates. A periodic array of identical free-standing metal plates with length L, plate thickness a, uniformly spaced with separation d is illuminated by p-polarized plane waves with an incident angle of θ. We assume a << d, for the thin-plate approximation.
Fig. 2
Fig. 2 Theoretical amplitude-reflectance |r| for a = 30 μm and L = 4 mm as functions of (a) k// and frequency with d = 1 mm, and (b) d and frequency with θ = 10°. Green ellipses indicate a few locations where the resonance linewidth becomes infinitesimally small, so that the resonance appears to vanish. The green dashed lines indicate the cut-off condition of the (−1st)-order free-space mode.
Fig. 3
Fig. 3 Analytic model to explain the resonant condition and the vanishing linewidth, and the comparison with the rigorous calculations. (a) D0 = 0 (solid lines) and N0 = 0 (dashed lines) with different symmetry (red for the symmetric sub-problem; blue for the anti-symmetric sub-problem) for L = 4 mm. D0 = 0 gives a good approximation to the rigorously-calculated resonant condition (RC) (square dots) in Fig. 2(b), and the cross-points of D0 = 0 and N0 = 0 with the same symmetry give good approximations to the vanishing-linewidth conditions for the corresponding resonances in Fig. 2(b). (b) Rigorously-calculated Qs of the first four resonances in Fig. 2(b).
Fig. 4
Fig. 4 FEM simulations of the thin-metal-plate array with a beam illumination. A collimated Gaussian beam illuminates a periodic array of 200 metal plates with L = 4 mm, a = 30 μm and d = 1 mm at θ = 10°. While generally the structure is almost perfectly transparent, at (a) 153.927 GHz and (b) 165.262 GHz strong reflections can be observed. Zoom-in view of the H-field norm at (c) 153.927 GHz and (d) 165.262 GHz clearly show the excitation of TM1 cavity modes.
Fig. 5
Fig. 5 Comparison of experimental results with theoretical predictions. (a) Schematic of the experimental setup. The transmission spectra of a device with L = 4 mm, a = 100 μm and d = 1 mm are measured with a THz-TDS system at various incident angles from 0 to 45°. (b) Experimental, and (c) theoretical power-transmittance as functions of frequency and θ. In (b) and (c), BIC-induced vanishing of resonances for normal incidence and for the 4th resonance for oblique incidence are indicated by the green ellipses and yellow ellipse, respectively. (d), Experimental (blue) and theoretical (red) power transmittance as functions of frequency at θ = 26°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P=f( kL 2 )+ N D ,
N= ( k // k ) 2 [ c 1 ( N 0 D 0 )+ c 2 D 0 f( kL 2 ) ] a d D 0 f( kL 2 )+o( k // 3 + a 2 +a k // 2 ),
D= D 0 + d 2 k 2 2 π 2 β 2 [ c 3 β 1 f( β 1 L 2 )kf( kL 2 ) ] ( k // k ) 2 c 4 f( β 1 L 2 ) a d +o( k // 3 + a 2 +a k // 2 ),
N 0 = [ 1 2k 3 β 2 f( kL 2 ) ] 2 ,
D 0 =1 64 β 1 9 π 2 β 2 f( β 1 L 2 ),

Metrics