Abstract

Mie-resonance terahertz absorbers by self-assembly method are designed and demonstrated in experiments and simulations. A monolayer of zirconium dioxide (ZrO2) microspheres fixed on a copper film with designed grids that were manufactured by direct writing with a composite ink system composed of polydimethylsiloxane (PDMS). More importantly, different spacing and array configurations were created economically and efficiently, showing visual performance. Magnetic resonance leads to near-unity absorption at about 0.4 THz in the samples. This work demonstrates efficient terahertz absorbers and highlights a novel direct writing fabrication method that can be extended to produce other optical devices for applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators

Riad Yahiaoui, Kenichiro Hanai, Keisuke Takano, Tsubasa Nishida, Fumiaki Miyamaru, Makoto Nakajima, and Masanori Hangyo
Opt. Lett. 40(13) 3197-3200 (2015)

Electrically controlled Mie-resonance absorber

Jiannan Gao, Chuwen Lan, Qian Zhao, Bo Li, and Ji Zhou
Opt. Express 25(19) 22658-22666 (2017)

Bulk magnetic terahertz metamaterials based on dielectric microspheres

M. Šindler, C. Kadlec, F. Dominec, P. Kužel, C. Elissalde, A. Kassas, J. Lesseur, D. Bernard, P. Mounaix, and H. Němec
Opt. Express 24(16) 18340-18345 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  2. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref] [PubMed]
  3. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
    [Crossref] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  5. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [Crossref] [PubMed]
  6. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [Crossref] [PubMed]
  7. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]
  8. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  9. P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  11. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref] [PubMed]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
    [Crossref]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  14. C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
    [Crossref] [PubMed]
  15. D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
    [Crossref] [PubMed]
  16. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  17. J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Electrically controlled Mie-resonance absorber,” Opt. Express 25(19), 22658–22666 (2017).
    [Crossref] [PubMed]
  18. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  19. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  20. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  21. L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  22. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  23. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  24. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  25. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [Crossref]
  26. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref] [PubMed]
  27. X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
    [Crossref]
  28. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
    [Crossref] [PubMed]
  29. J. A. Lewis, “Direct ink writing of 3D functional materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).
    [Crossref]
  30. Q. Li and J. A. Lewis, “Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures,” Adv. Mater. 15(19), 1639–1643 (2003).
    [Crossref]
  31. V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria‐Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
    [Crossref]
  32. M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
    [Crossref]
  33. P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
    [Crossref]
  34. R. Yahiaoui, K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, “Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators,” Opt. Lett. 40(13), 3197–3200 (2015).
    [Crossref] [PubMed]
  35. J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
    [Crossref]

2017 (4)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Electrically controlled Mie-resonance absorber,” Opt. Express 25(19), 22658–22666 (2017).
[Crossref] [PubMed]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

2016 (1)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

2015 (4)

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

R. Yahiaoui, K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, “Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators,” Opt. Lett. 40(13), 3197–3200 (2015).
[Crossref] [PubMed]

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

2014 (1)

J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
[Crossref]

2013 (2)

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

2012 (1)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2011 (6)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

2010 (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

2006 (2)

J. A. Lewis, “Direct ink writing of 3D functional materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

2003 (1)

Q. Li and J. A. Lewis, “Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures,” Adv. Mater. 15(19), 1639–1643 (2003).
[Crossref]

2002 (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

1997 (1)

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria‐Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Abbott, D.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Anderson, Z.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Averitt, R. D.

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Belov, I.

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria‐Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

Belov, V.

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria‐Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

Bhaskaran, M.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Burgnies, L.

J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
[Crossref]

Cai, W.

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Chettiar, U. K.

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Cong, L. Q.

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ding, F.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Drachev, V. P.

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fan, K.

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fischer, B.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Fumeaux, C.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Gao, J.

Gao, S.

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Geng, Z.

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Gutruf, P.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Hanai, K.

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Hangyo, M.

Hao, J.

J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
[Crossref]

Harel, L.

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria‐Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

He, S. L.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Headland, D.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Helm, H.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Jin, Y.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kang, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kravchenko, I. I.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kuroda, S.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lai, Y.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lan, C.

J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Electrically controlled Mie-resonance absorber,” Opt. Express 25(19), 22658–22666 (2017).
[Crossref] [PubMed]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lewis, J. A.

J. A. Lewis, “Direct ink writing of 3D functional materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).
[Crossref]

Q. Li and J. A. Lewis, “Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures,” Adv. Mater. 15(19), 1639–1643 (2003).
[Crossref]

Li, B.

J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Electrically controlled Mie-resonance absorber,” Opt. Express 25(19), 22658–22666 (2017).
[Crossref] [PubMed]

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Li, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, Q.

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

Q. Li and J. A. Lewis, “Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures,” Adv. Mater. 15(19), 1639–1643 (2003).
[Crossref]

Lippens, D.

J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
[Crossref]

Liu, X.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Miyamaru, F.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Nakajima, M.

Nirantar, S.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Nishida, T.

Padilla, W. J.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Plochocka, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Sadaune, V.

J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shadrivov, I. V.

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Shiwa, M.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sriram, S.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Takano, K.

Tan, S. Y.

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tao, H.

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Uhd Jepsen, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Valentine, J.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Walther, M.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

Wang, R.

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Watanabe, M.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Withayachumnankul, W.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Yahiaoui, R.

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

R. Yahiaoui, K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, “Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators,” Opt. Lett. 40(13), 3197–3200 (2015).
[Crossref] [PubMed]

Yamawaki, H.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Yan, F. P.

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yang, W.

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

Yang, Y.

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Yang, Y. M.

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yuan, H. K.

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, W.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Zhang, W. L.

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Zhang, X.

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Electrically controlled Mie-resonance absorber,” Opt. Express 25(19), 22658–22666 (2017).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Gao, C. Lan, Q. Zhao, B. Li, and J. Zhou, “Electrically controlled Mie-resonance absorber,” Opt. Express 25(19), 22658–22666 (2017).
[Crossref] [PubMed]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zhu, P.

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. A. Lewis, “Direct ink writing of 3D functional materials,” Adv. Funct. Mater. 16(17), 2193–2204 (2006).
[Crossref]

Adv. Mater. (3)

Q. Li and J. A. Lewis, “Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures,” Adv. Mater. 15(19), 1639–1643 (2003).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

P. Zhu, W. Yang, R. Wang, S. Gao, B. Li, and Q. Li, “Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties,” Adv. Opt. Mater. 5(7), 1600977 (2017).
[Crossref]

Appl. Phys. Lett. (3)

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

L. Q. Cong, S. Y. Tan, R. Yahiaoui, F. P. Yan, W. L. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Biopolymers (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

J. Am. Ceram. Soc. (1)

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria‐Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

J. Appl. Phys. (1)

J. Hao, V. Sadaune, L. Burgnies, and D. Lippens, “Ferroelectrics based absorbing layers,” J. Appl. Phys. 116(4), 043520 (2014).
[Crossref]

Nano Lett. (1)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Moitra, Y. M. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (4)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (2)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The photograph of the direct writing process of Adventure 3D-LB-Printer.
Fig. 2
Fig. 2 (a) The diagrammatic sketch of the reflection module in THz-TDS system. (b) Beam path diagram of THz wave.
Fig. 3
Fig. 3 (a) Scanning electron microscope (SEM) image of the industrially produced ZrO2 microspheres. (b) XRD spectra of the particles. The red curve is the measured spectrum and the black vertical line is the spectrum from the tetragonal ZrO2 PDF standard card. (c) Schematic illustration of the process of direct writing of the 2D grid.
Fig. 4
Fig. 4 (a) Hexagonal 2D grid of the metamaterial absorber, where the incident plane wave is polarized as indicated. (b-d) MPAs with microspheres spaced at 250 μm, 280 μm and 300 μm, respectively.
Fig. 5
Fig. 5 (a) Simulated and (b) experimental absorption. (c) Spatial distribution of the resonant magnetic field H from simulations. (d) Simulated results of the uniform and nonuniform dimensions of the microspheres.
Fig. 6
Fig. 6 Simulations of transmission. (a) The S-parameter. (b) Schematic diagram of the unit cell of a dielectric sphere. (c) and (d) Simulated distribution of the electric field and magnetic field.
Fig. 7
Fig. 7 (a) Square 2D grid of metamaterial absorber, where the incident plane wave is polarized in the same manner as Fig. 2a above. (b) Simulated and (c) experimental absorption. (d) Simulations of absorption behaviors at different microsphere’s radius. (e) Schematic diagram of incident angle θinc. (f) Simulations of absorption behaviors at different incident angle (θinc) of THz wave.
Fig. 8
Fig. 8 The absorption of the sample without microspheres.
Fig. 9
Fig. 9 The schematic diagram of sphere influenced by surrounding spheres in different lattice.
Fig. 10
Fig. 10 Simulations of different distances between the spheres and the ground plane in the absorption behaviors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε eff = ε m ( 1+ 3v F( θ )+2 K e F( θ ) K e v ),
μ eff = μ m ( 1+ 3v F( θ )+2 K m F( θ ) K m v ),
F( θ )= 2(sinθθcosθ) ( θ 2 1)sinθ+θcosθ ,
A(ω)=1R(ω)=1 | S 11 (ω) | 2 .

Metrics