Abstract

We describe the development and performance of a new type of optical sensor suitable for registering the binding/dissociation of nanoscopic particles near a gold sensing surface. The method shares similarities with surface plasmon resonance microscopy but uses a completely different optical signature for reading out binding events. This new optical read-out mechanism, which we call confined optical field enhanced fluorescence emission (Cofefe), uses pulsed surface plasmon polariton fields at the gold/liquid interface that give rise to confined optical fields upon binding of the target particle to the gold surface. The confined near-fields are sufficient to induce two-photon absorption in the gold sensor surface near the binding site. Subsequent radiative recombination of the electron-hole pairs in the gold produces fluorescence emission, which can be captured by a camera in the far-field. Bound nanoparticles show up as bright confined spots against a dark background on the camera. We show that the Cofefe sensor is capable of detecting gold and silicon nanoparticles, as well as polymer nanospheres and sub-μm lipid droplets in a label-free manner with average illumination powers of less than 10 μW/μm2.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles

Ming-Yaw Ng and Wei-Chih Liu
Opt. Express 17(7) 5867-5878 (2009)

Compact surface plasmon-enhanced fluorescence biochip

Koji Toma, Milan Vala, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek
Opt. Express 21(8) 10121-10132 (2013)

Live-cell fluorescence imaging with extreme background suppression by plasmonic nanocoatings

Benjamin Schreiber, Hannah S. Heil, Martin Kamp, and Katrin G. Heinze
Opt. Express 26(16) 21301-21313 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24 (23), 1469–1470 (1988).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor. Actuat. B-Chem. 54(1), 3–15 (1999).
    [Crossref]
  3. C. Hahnefeld, S. Drewianka, and F. W. Herberg, “Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors,” in Molecular Diagnosis of Infectious Diseases, J. Decker and U. Reischl., eds. (Humana Press, 2004), pp 299–320.
  4. C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
    [Crossref] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensor for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref] [PubMed]
  6. K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
    [Crossref] [PubMed]
  7. P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B-Chem. 229, 110–130 (2016).
    [Crossref]
  8. C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
    [Crossref]
  9. J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
    [Crossref] [PubMed]
  10. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1), 11–15 (2000).
    [Crossref]
  11. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983, (2007).
    [Crossref] [PubMed]
  12. F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
    [Crossref]
  13. W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
    [Crossref] [PubMed]
  14. K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
    [Crossref]
  15. S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
    [Crossref] [PubMed]
  16. H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
    [Crossref] [PubMed]
  17. A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
    [Crossref]
  18. A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
    [Crossref] [PubMed]
  19. H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G. Hass, M. Francombe, and R. Hoffman, eds. (Academic, 1977).
  20. R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
    [Crossref]
  21. H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
    [Crossref] [PubMed]
  22. I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
    [Crossref]
  23. R. He, Y. Su, K. Cho, C. Lin, N. Chang, C. Chang, and S. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
    [Crossref] [PubMed]
  24. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185 (1969).
    [Crossref]
  25. G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noblemetals and its enhancement on roughened surfaces,” Phys. Rev. B 33(33), 7923–7936 (1986).
    [Crossref]
  26. M. R Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [Crossref]
  27. A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353, 335–338 (1991).
    [Crossref]
  28. W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science 262, 1242–1244 (1993).
    [Crossref] [PubMed]
  29. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
    [Crossref] [PubMed]
  30. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
    [Crossref]
  31. L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190(2), 165–175 (2010).
    [Crossref] [PubMed]
  32. N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
    [Crossref]
  33. J. P. Kenison, A. Fast, F. Guo, A. LeBon, W. Jiang, and E. O. Potma, “Imaging properties of surface-enhanced coherent anti-Stokes Raman scattering microscopy on thin gold films,” J. Opt. Soc. Am. B 34(10), 2104–2114 (2017).
    [Crossref]
  34. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
    [Crossref]
  35. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [Crossref] [PubMed]
  36. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
    [Crossref] [PubMed]
  37. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
    [Crossref] [PubMed]
  38. C. Lin, K. Chiu, C. Chang, S. Chang, T. Guo, and S. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18(12), 12807–12817 (2010).
    [Crossref] [PubMed]
  39. S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
    [Crossref]
  40. S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
    [Crossref] [PubMed]
  41. S.-H. Cao, Y.-Y. Zhai, K.-X. Xie, and Y.-Q. Li, “Surface Plasmon-Coupled Emission,” in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, C. D. Geddes, ed. (John Wiley & Sons, 2017).
    [Crossref]
  42. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
    [Crossref] [PubMed]
  43. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010).
    [Crossref] [PubMed]
  44. B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
    [Crossref] [PubMed]

2017 (3)

A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
[Crossref] [PubMed]

H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
[Crossref] [PubMed]

J. P. Kenison, A. Fast, F. Guo, A. LeBon, W. Jiang, and E. O. Potma, “Imaging properties of surface-enhanced coherent anti-Stokes Raman scattering microscopy on thin gold films,” J. Opt. Soc. Am. B 34(10), 2104–2114 (2017).
[Crossref]

2016 (3)

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B-Chem. 229, 110–130 (2016).
[Crossref]

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

2015 (1)

2014 (3)

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
[Crossref]

2012 (2)

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
[Crossref]

2010 (6)

W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010).
[Crossref] [PubMed]

C. Lin, K. Chiu, C. Chang, S. Chang, T. Guo, and S. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18(12), 12807–12817 (2010).
[Crossref] [PubMed]

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
[Crossref]

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

J. Homola, “Surface plasmon resonance sensor for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

2007 (3)

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[Crossref] [PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983, (2007).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
[Crossref] [PubMed]

2006 (2)

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

2005 (2)

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

2004 (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

2003 (2)

M. R Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
[Crossref]

2002 (1)

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

2000 (2)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[Crossref] [PubMed]

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1), 11–15 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor. Actuat. B-Chem. 54(1), 3–15 (1999).
[Crossref]

1997 (1)

C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[Crossref]

1993 (1)

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science 262, 1242–1244 (1993).
[Crossref] [PubMed]

1991 (1)

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353, 335–338 (1991).
[Crossref]

1988 (2)

R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
[Crossref]

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24 (23), 1469–1470 (1988).
[Crossref]

1986 (1)

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noblemetals and its enhancement on roughened surfaces,” Phys. Rev. B 33(33), 7923–7936 (1986).
[Crossref]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185 (1969).
[Crossref]

Ashdown, G.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Beversluis, M. R

M. R Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Boozer, C.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

Borejdo, J.

Bouhelier, A.

M. R Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Boyd, G. T.

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noblemetals and its enhancement on roughened surfaces,” Phys. Rev. B 33(33), 7923–7936 (1986).
[Crossref]

Brivanlou, A. H.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

Brockman, J. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[Crossref] [PubMed]

Brus, L. E.

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science 262, 1242–1244 (1993).
[Crossref] [PubMed]

Cai, W.

S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
[Crossref]

Cai, W. P.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

Calander, N.

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

Canham, L. T.

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353, 335–338 (1991).
[Crossref]

Cao, S.

S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
[Crossref]

Cao, S. H.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

Cao, S.-H.

S.-H. Cao, Y.-Y. Zhai, K.-X. Xie, and Y.-Q. Li, “Surface Plasmon-Coupled Emission,” in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, C. D. Geddes, ed. (John Wiley & Sons, 2017).
[Crossref]

Chang, C.

Chang, N.

Chang, S.

Chen, H.

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

Chen, H. Y.

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

Chen, S.

Cheng, Q.

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[Crossref] [PubMed]

Chiu, K.

Cho, K.

Chung, E.

Churchman, L. S.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
[Crossref]

Cong, S.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

Corn, R. M.

A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
[Crossref] [PubMed]

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
[Crossref]

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[Crossref] [PubMed]

C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[Crossref]

Culley, S.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Cullis, A. G.

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353, 335–338 (1991).
[Crossref]

Drewianka, S.

C. Hahnefeld, S. Drewianka, and F. W. Herberg, “Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors,” in Molecular Diagnosis of Infectious Diseases, J. Decker and U. Reischl., eds. (Humana Press, 2004), pp 299–320.

Dubertret, B.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

Engel, M.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Fast, A.

Flyvbjerg, H.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
[Crossref]

Frutos, A.G.

C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[Crossref]

Gaspar, M.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor. Actuat. B-Chem. 54(1), 3–15 (1999).
[Crossref]

Ge, B.

Goldys, E.M.

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

Greve, J.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
[Crossref]

Gryczynski, I.

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
[Crossref]

Gryczynski, Z.

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
[Crossref]

Guan, H.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

Guo, F.

Guo, T.

Gurevich, E. L.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Gustafsson, N.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Hahnefeld, C.

C. Hahnefeld, S. Drewianka, and F. W. Herberg, “Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors,” in Molecular Diagnosis of Infectious Diseases, J. Decker and U. Reischl., eds. (Humana Press, 2004), pp 299–320.

Halpern, A. R.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
[Crossref]

Haydel, S. E.

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

He, R.

Heintzmann, R.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

Henriques, R.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Herberg, F. W.

C. Hahnefeld, S. Drewianka, and F. W. Herberg, “Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors,” in Molecular Diagnosis of Infectious Diseases, J. Decker and U. Reischl., eds. (Humana Press, 2004), pp 299–320.

Homola, J.

J. Homola, “Surface plasmon resonance sensor for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor. Actuat. B-Chem. 54(1), 3–15 (1999).
[Crossref]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983, (2007).
[Crossref] [PubMed]

Huang, X.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Huo, S.-X.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

Iriya, R.

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

Jiang, W.

Jordan, C. E.

C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[Crossref]

Kano, H.

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1), 11–15 (2000).
[Crossref]

Kenison, J. P.

Kim, G.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

Kim, Y.-H.

Knoll, W.

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1), 11–15 (2000).
[Crossref]

Kolkman, H.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
[Crossref]

Kooyman, R. P. H.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
[Crossref]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Kuang, C.

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
[Crossref]

Lakowicz, J.R.

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

LeBon, A.

Leonhardt, H.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

Li, J.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Li, Y.

S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
[Crossref]

Li, Y.-Q.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

S.-H. Cao, Y.-Y. Zhai, K.-X. Xie, and Y.-Q. Li, “Surface Plasmon-Coupled Emission,” in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, C. D. Geddes, ed. (John Wiley & Sons, 2017).
[Crossref]

Libchaber, A.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

Lin, C.

Liu, Q.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
[Crossref]

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

Liu, X.

Londergan, T.

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

Lu, G.J.

A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
[Crossref] [PubMed]

Lu, J.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Lu, Z. H.

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noblemetals and its enhancement on roughened surfaces,” Phys. Rev. B 33(33), 7923–7936 (1986).
[Crossref]

Ma, Y.

Maley, A. M

A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
[Crossref] [PubMed]

Malicka, J.

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
[Crossref]

Marwedel, P.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185 (1969).
[Crossref]

Mortensen, K. I.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
[Crossref]

Müller, H.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Nagaraj, V. J.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

Nelson, B. P.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[Crossref] [PubMed]

Noireaux, V.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

Norris, D. J.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

Novotny, L.

M. R Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Owen, D. M.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Patel, U.

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Pereira, P. M.

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Phillips, K. S.

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[Crossref] [PubMed]

Potma, E. O.

Raether, H.

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G. Hass, M. Francombe, and R. Hoffman, eds. (Academic, 1977).

Schermelleh, L.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

Shan, X.

H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
[Crossref] [PubMed]

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Shapiro, M.G.

A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
[Crossref] [PubMed]

Shen, Y. R.

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noblemetals and its enhancement on roughened surfaces,” Phys. Rev. B 33(33), 7923–7936 (1986).
[Crossref]

Sheppard, C. J. R.

Singh, P.

P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B-Chem. 229, 110–130 (2016).
[Crossref]

Skourides, P.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

So, P. T. C.

Spudich, J. A.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
[Crossref]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Su, Y.

Syal, K.

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

Szajowski, P. F.

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science 262, 1242–1244 (1993).
[Crossref] [PubMed]

Tang, W. T.

Tao, N.

H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
[Crossref] [PubMed]

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Thiel, A. J.

C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[Crossref]

Tian, Z.-Q.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

Timm, C.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Toussaint, K. C.

Uttamchandani, D.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24 (23), 1469–1470 (1988).
[Crossref]

Van Gent, J.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
[Crossref]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Wang, S.

H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
[Crossref] [PubMed]

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Wang, W.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

Wang, Y.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
[Crossref]

Weichert, F.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

Weng, Y. H.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

Wilson, W. L.

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science 262, 1242–1244 (1993).
[Crossref] [PubMed]

Wood, J. B.

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
[Crossref]

Wu, J.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

Xie, K. X.

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

Xie, K.-X.

S.-H. Cao, Y.-Y. Zhai, K.-X. Xie, and Y.-Q. Li, “Surface Plasmon-Coupled Emission,” in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, C. D. Geddes, ed. (John Wiley & Sons, 2017).
[Crossref]

Yang, Y.

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor. Actuat. B-Chem. 54(1), 3–15 (1999).
[Crossref]

You, S.

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983, (2007).
[Crossref] [PubMed]

Yu, H.

H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
[Crossref] [PubMed]

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983, (2007).
[Crossref] [PubMed]

Zhai, Y.-Y.

S.-H. Cao, Y.-Y. Zhai, K.-X. Xie, and Y.-Q. Li, “Surface Plasmon-Coupled Emission,” in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, C. D. Geddes, ed. (John Wiley & Sons, 2017).
[Crossref]

Zhang, D.

Zhang, L. M.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24 (23), 1469–1470 (1988).
[Crossref]

Zybin, A.

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

ACS Nano (4)

K. Syal, R. Iriya, Y. Yang, H. Yu, S. Wang, S. E. Haydel, H. Y. Chen, and N. Tao, “Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale,” ACS Nano 10(1), 845–852 (2016).
[Crossref]

H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, “Plasmonic imaging and detection of single DNA molecules,” ACS Nano 8(4), 3427–3433 (2014).
[Crossref] [PubMed]

A. R. Halpern, J. B. Wood, Y. Wang, and R. M. Corn, “Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of of DNA hybridization adsorption,” ACS Nano 8(1), 1022–1030 (2014).
[Crossref]

A. M Maley, G.J. Lu, M.G. Shapiro, and R. M. Corn, “Characterizing single polymeric and protein nanoparticles with surface plasmon resonance imaging measurements,” ACS Nano 11(7), 7447–7456 (2017).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[Crossref] [PubMed]

Anal. Chem. (3)

C. E. Jordan, A.G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavadin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[Crossref]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983, (2007).
[Crossref] [PubMed]

H. Yu, X. Shan, S. Wang, and N. Tao, “Achieving high spatial resolution surface plasmon resonance microscopy with image reconstruction,” Anal. Chem. 89(5), 2704–2707, (2017).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

R. P. H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 (Supplement C), 35–45, (1988).
[Crossref]

Annu. Rev. Phys. Chem. (2)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[Crossref] [PubMed]

S. Cao, W. Cai, Q. Liu, and Y. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Phys. Chem. 5, 317–336 (2012).
[Crossref]

Biochem. Bioph. Res. Co. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Bioph. Res. Co. 307(3), 435–439 (2003).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensor for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

Curr. Opin. Biotech. (1)

C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technololgies,” Curr. Opin. Biotech. 17(4), 400–405 (2006).
[Crossref] [PubMed]

Electron. Lett. (1)

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24 (23), 1469–1470 (1988).
[Crossref]

J. Am. Chem. Soc. (1)

S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, S.-X. Huo, Z.-Q. Tian, and Y.-Q. Li, “Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence,” J. Am. Chem. Soc. 136(19), 6802–6805 (2014).
[Crossref] [PubMed]

J. Cell. Biol. (1)

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

Nat. Chem. (1)

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref] [PubMed]

Nat. Comm. (1)

N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, “Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations,” Nat. Comm. 7, 12471 (2016).
[Crossref]

Nat. Meth (1)

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Meth 7(5), 377–381 (2010).
[Crossref]

Nature (1)

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353, 335–338 (1991).
[Crossref]

Opt. Commun. (1)

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182(1), 11–15 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

G. T. Boyd, Z. H. Lu, and Y. R. Shen, “Photoinduced luminescence from the noblemetals and its enhancement on roughened surfaces,” Phys. Rev. B 33(33), 7923–7936 (1986).
[Crossref]

M. R Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Phys. Rev. Lett. (2)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185 (1969).
[Crossref]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, “Label free imaging, detection, and mass measurement of single viruses by surface plasmon resonance,” Proc. Natl. Acad. Sci. 107(37), 16028–16032 (2010).
[Crossref] [PubMed]

Science (2)

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science 262, 1242–1244 (1993).
[Crossref] [PubMed]

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, 1759–1762, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 2981759 (2002).
[Crossref] [PubMed]

Sens. Actuators B-Chem. (2)

F. Weichert, M. Gaspar, C. Timm, A. Zybin, E. L. Gurevich, M. Engel, H. Müller, and P. Marwedel, “Signal analysis and classification fir surface plasmon assisted microscopy of nanoobjects,” Sens. Actuators B-Chem. 151(1), 281–290 (2010).
[Crossref]

P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B-Chem. 229, 110–130 (2016).
[Crossref]

Sensor. Actuat. B-Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor. Actuat. B-Chem. 54(1), 3–15 (1999).
[Crossref]

Thin Solid Films (1)

I. Gryczynski, J. Malicka, J.R. Lakowicz, E.M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1), 173–176 (2005).
[Crossref]

Other (3)

C. Hahnefeld, S. Drewianka, and F. W. Herberg, “Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors,” in Molecular Diagnosis of Infectious Diseases, J. Decker and U. Reischl., eds. (Humana Press, 2004), pp 299–320.

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G. Hass, M. Francombe, and R. Hoffman, eds. (Academic, 1977).

S.-H. Cao, Y.-Y. Zhai, K.-X. Xie, and Y.-Q. Li, “Surface Plasmon-Coupled Emission,” in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, C. D. Geddes, ed. (John Wiley & Sons, 2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the sensor device. A fs-laser beam is focused on the back focal plane of a high NA objective lens, launching an SPP field at the sensor surface. Particle binding gives rise to local two-photon excited fluorescence in the gold film, which is captured by an imaging camera.
Fig. 2
Fig. 2 Gold nanospheres (20nm) adhered to the sensor surface in an aqueous medium. Average power of the illuminating beam before the objective lens is 15 mW.
Fig. 3
Fig. 3 (a) Sensor image of 30 nm Si nanoparticles in water under illumination of 4.4μW/μm2. (b) Zoom of the region of interest indicated in (a). The logarithm of the signal is taken to reveal weaker emitters. (c) Transmission image of the same region of interest as in (b).
Fig. 4
Fig. 4 (a) Polystyrene beads (100 nm) suspended in water. (b) Cholesteryl oleate droplets adhered to the sensor surface. Arrow points to a smaller, sub-μm droplet. In both images, 5.2μW/μm2 of illumination power is used.
Fig. 5
Fig. 5 Magnitude of the fluorescence signal obtained from the locations of cholesteryl oleate droplets as the average power of the illuminating beam is increased. Power is measured at the back aperture of the objective lens.
Fig. 6
Fig. 6 Analysis of detected signal from 50 nm polystyrene beads. (a) Probability distribution of the number of counts detected in individual isolated spots. The green overlays are Gaussian fits to the first three peaks observed in the histogram to highlight its main features. (b) Cross section of a spot (solid dots), averaged over 10 different detected spots. The red line is a Gaussian fit revealing a width of 0.367 μm. Inset shows the averaged pointspread function. The scale bar is 300 nm.
Fig. 7
Fig. 7 (a) Band structure of gold and the proposed electron-hole pair generation induced by two-photon absorption (red arrows), followed by radiative recombination (green shaded area). Dashed line denotes the Fermi level. (b) Proposed mechanism of the sensor. A particle of dielectric constant εa moves in an aqueous solution of dielectric constant ε1. Upon illumination through the glass medium (ε3), SPP modes are excited at the gold/liquid interface. Adsorption of the particle to the gold surface produces confined fields near the binding site, inducing two-photon absorption in the gold layer. Radiative electron-hole recombination is facilitated by the field confinement and the antenna properties of the gold film.

Metrics