Abstract

This paper presents the characterization of polymer optical fibers (POFs) submitted to the catastrophic fuse effect towards intensity-variation-based sensing of strain, transverse force, temperature, and moisture. In the experiments, POFs with and without the fuse effect are tested and the results are compared with respect to the sensitivity, linearity, and root mean squared error (RMSE). The fused POFs have higher linearity and lower RMSE than non-fused POFs in strain and transverse force sensing. Also, the sensitivity of the fused POFs is higher in transverse force and temperature sensing, which can be related to the higher sensitivity to the curvature that the transverse force creates on the POF and to the more significant variations of the refractive index with temperature increase. Additionally, the fused POFs present lower moisture absorption than the non-fused POFs. The presented results indicate a great potential of the fused POFs intensity-variation-based sensing applications of various physical parameters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications

Arnaldo Leal-Junior, Anselmo Frizera, Maria José Pontes, Paulo Antunes, Nélia Alberto, Maria Fátima Domingues, Heeyoung Lee, Ryo Ishikawa, Yosuke Mizuno, Kentaro Nakamura, Paulo André, and Carlos Marques
Opt. Lett. 43(8) 1754-1757 (2018)

Design and characterization of a curvature sensor using fused polymer optical fibers

Arnaldo Leal-Junior, Anselmo Frizera, Heeyoung Lee, Yosuke Mizuno, Kentaro Nakamura, Cátia Leitão, Maria Fátima Domingues, Nélia Alberto, Paulo Antunes, Paulo André, Carlos Marques, and Maria José Pontes
Opt. Lett. 43(11) 2539-2542 (2018)

Polarization effects in polymer FBGs: study and use for transverse force sensing

Xuehao Hu, David Saez-Rodriguez, Carlos Marques, Ole Bang, David J Webb, Patrice Mégret, and Christophe Caucheteur
Opt. Express 23(4) 4581-4590 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, “The fiber fuse--from a curious effect to a critical issue: A 25^th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
    [Crossref] [PubMed]
  2. S. Todoroki, Fiber Fuse: Light-Induced Continuous Breakdown of Silica Glass Optical Fiber (Springer, 2014).
  3. E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
    [Crossref]
  4. F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
    [Crossref]
  5. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
    [Crossref]
  6. N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, K. Nakajima, S. Tomita, and M. Tsubokawa, “Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber,” J. Lightwave Technol. 28(15), 2115–2120 (2010).
    [Crossref]
  7. Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
    [Crossref]
  8. Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
    [Crossref] [PubMed]
  9. Y. Mizuno, N. Hayashi, H. Tanaka, and K. Nakamura, “Spiral Propagation of Polymer Optical Fiber Fuse Accompanied by Spontaneous Burst and Its Real-Time Monitoring Using Brillouin Scattering,” IEEE Photon. J. 6, (2014).
    [Crossref]
  10. P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
    [Crossref]
  11. M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).
  12. N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
    [Crossref]
  13. M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
    [Crossref]
  14. M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
    [Crossref]
  15. C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
    [Crossref] [PubMed]
  16. C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
    [Crossref]
  17. A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
    [Crossref] [PubMed]
  18. P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13(5), 1716–1720 (2013).
    [Crossref]
  19. A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 36(4), 1112–1117 (2018).
    [Crossref]
  20. A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors (Basel) 18(2), 301 (2018).
    [Crossref] [PubMed]
  21. A. G. Leal-Junior, A. Frizera, C. Marques, M. R. A. Sanchez, W. M. dos Santos, A. A. G. Siqueira, M. V. Segatto, and M. J. Pontes, “Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring,” J. Lightwave Technol. 36(9), 1698–1705 (2018).
    [Crossref]
  22. D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
    [Crossref]
  23. L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
    [Crossref] [PubMed]
  24. A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
    [Crossref] [PubMed]
  25. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
    [Crossref]
  26. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  27. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  28. A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
    [Crossref]
  29. N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
    [Crossref] [PubMed]
  30. N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
    [Crossref] [PubMed]

2018 (4)

2017 (5)

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

2016 (4)

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

2015 (4)

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

2014 (2)

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

2013 (3)

R. Kashyap, “The fiber fuse--from a curious effect to a critical issue: A 25^th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
[Crossref] [PubMed]

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13(5), 1716–1720 (2013).
[Crossref]

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

2012 (2)

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

2011 (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

2010 (1)

2004 (1)

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

2002 (1)

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Alberto, N.

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Alberto, N. J.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Andre, P.

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

Andre, P. S.

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13(5), 1716–1720 (2013).
[Crossref]

André, P.

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

André, P. S.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

André, P. S. B.

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Antunes, P.

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

Antunes, P. F. C.

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13(5), 1716–1720 (2013).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bajic, J. S.

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

Bang, O.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bastos, A. R.

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

Bilro, L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Chamorovsky, Y. K.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Chen, R.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Churbanov, M. F.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Correia, S. F. H.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

Da Costa Antunes, P. F.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

Dakic, B. M.

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

De Brito André, P. S.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

De Brito Paixão, T.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

De Fátima, M.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

de Sena, G. L.

Dianov, E. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Díaz, C. A. R.

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Domingues, F.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

Domingues, M. F.

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

Domingues, M. F. F.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

dos Santos, W. M.

Ferreira, R. A. S.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

Frias, A. R.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

Frias, R.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

Frizera, A.

A. G. Leal-Junior, A. Frizera, C. Marques, M. R. A. Sanchez, W. M. dos Santos, A. A. G. Siqueira, M. V. Segatto, and M. J. Pontes, “Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring,” J. Lightwave Technol. 36(9), 1698–1705 (2018).
[Crossref]

A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 36(4), 1112–1117 (2018).
[Crossref]

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

Frizera-Neto, A.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors (Basel) 18(2), 301 (2018).
[Crossref] [PubMed]

Frolov, A. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hanzawa, N.

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Huang, Y.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Ishikawa, R.

Ivanov, G. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Junior, A. G. L.

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

Kashyap, R.

Krebber, K.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Kurokawa, K.

Leal-Junior, A.

Leal-Junior, A. G.

Lee, H.

Leitão, C.

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Leite, S.

Li, Y.

Liao, Q.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Machado, L. C.

Marques, C.

Marques, C. A.

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Marques, C. A. F.

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Matsui, T.

Mergo, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Mesquita, E. F. T.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

Mizuno, Y.

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Nakajima, K.

Nakamura, K.

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Nogueira, R.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Pinto, J. L.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Plotnichenko, V. G.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Pontes, M. J.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors (Basel) 18(2), 301 (2018).
[Crossref] [PubMed]

A. G. Leal-Junior, A. Frizera, and M. J. Pontes, “Dynamic Compensation Technique for POF Curvature Sensors,” J. Lightwave Technol. 36(4), 1112–1117 (2018).
[Crossref]

A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett. 43(8), 1754–1757 (2018).
[Crossref] [PubMed]

A. G. Leal-Junior, A. Frizera, C. Marques, M. R. A. Sanchez, W. M. dos Santos, A. A. G. Siqueira, M. V. Segatto, and M. J. Pontes, “Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring,” J. Lightwave Technol. 36(9), 1698–1705 (2018).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Pospori, A.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Prado, A. R.

Ribeiro, M. R. N.

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Sanchez, M. R. A.

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Segatto, M. V.

Siqueira, A. A. G.

Slankamenac, M. P.

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

Snopatin, G. E.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Sousa, A. O. P.

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

Stajanca, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Stefani, A.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stupar, D. Z.

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

Tanaka, H.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Tavares, C.

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

Todoroki, S.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

Todoroki, S. I.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Tomita, S.

Tsubokawa, M.

Tsujikawa, K.

Varum, H.

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13(5), 1716–1720 (2013).
[Crossref]

Vorobjev, I. L.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

Webb, D. J.

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Xiong, Z.

Yuan, W.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhao, M.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Zhong, N.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Zhu, X.

N. Zhong, M. Zhao, Q. Liao, X. Zhu, Y. Li, and Z. Xiong, “Effect of heat treatments on the performance of polymer optical fiber sensor,” Opt. Express 24(12), 13394–13409 (2016).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Živanov, M. B.

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

Appl. Phys. Lett. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. I. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Electron. Lett. (2)

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, and P. S. André, “Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres,” Electron. Lett. 48(20), 1295 (2012).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical fiber microcavity strain sensors produced by the catastrophic fuse effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber Fuse Effect in Microstructured Fibers,” IEEE Photonics Technol. Lett. 16(1), 180–181 (2004).
[Crossref]

IEEE Sens. J. (2)

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13(5), 1716–1720 (2013).
[Crossref]

M. De Fátima, F. Domingues, T. De Brito Paixão, E. F. T. Mesquita, N. Alberto, A. R. Frias, R. A. S. Ferreira, H. Varum, P. F. Da Costa Antunes, and P. S. De Brito André, “Liquid hydrostatic pressure optical sensor based on micro-cavity produced by the catastrophic fuse effect,” IEEE Sens. J. 15, 5654–5658 (2015).

J. Lightwave Technol. (3)

Meas. J. Int. Meas. Confed. (1)

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Meas. J. Int. Meas. Confed. 77, 265–268 (2016).
[Crossref]

Microw. Opt. Technol. Lett. (1)

M. F. Domingues, P. Antunes, N. Alberto, A. R. Frias, A. R. Bastos, R. A. S. Ferreira, and P. S. André, “Enhanced sensitivity high temperature optical fiber FPI sensor created with the catastrophic fuse effect,” Microw. Opt. Technol. Lett. 57(4), 972–974 (2015).
[Crossref]

Opt. Commun. (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (3)

C. A. F. Marques, D. J. Webb, and P. Andre, “Polymer optical fiber sensors in human life safety,” Opt. Fiber Technol. 36, 144–154 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Opt. Laser Technol. (1)

A. G. L. Junior, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

N. Alberto, C. Tavares, M. F. Domingues, S. F. H. Correia, C. Marques, P. Antunes, J. L. Pinto, R. A. S. Ferreira, and P. S. André, “Relative humidity sensing using micro-cavities produced by the catastrophic fuse effect,” Opt. Quantum Electron. 48(3), 1–8 (2016).
[Crossref]

Phys. Scr. (1)

D. Z. Stupar, J. S. Bajić, B. M. Dakić, M. P. Slankamenac, and M. B. Živanov, “The possibility of using a plastic optical fibre as a sensing element in civil structural health monitoring,” Phys. Scr. T157, 014031 (2013).
[Crossref]

Sci. Rep. (2)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep. 4(1), 4800 (2015).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, and R. Chen, “Temperature-independent polymer optical fiber evanescent wave sensor,” Sci. Rep. 5(1), 11508 (2015).
[Crossref] [PubMed]

Sensors (Basel) (3)

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors (Basel) 18(2), 301 (2018).
[Crossref] [PubMed]

C. A. R. Díaz, C. Leitão, C. A. Marques, M. F. Domingues, N. Alberto, M. J. Pontes, A. Frizera, M. R. N. Ribeiro, P. S. B. André, and P. F. C. Antunes, “Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices,” Sensors (Basel) 17(10), 2414 (2017).
[Crossref] [PubMed]

Other (2)

Y. Mizuno, N. Hayashi, H. Tanaka, and K. Nakamura, “Spiral Propagation of Polymer Optical Fiber Fuse Accompanied by Spontaneous Burst and Its Real-Time Monitoring Using Brillouin Scattering,” IEEE Photon. J. 6, (2014).
[Crossref]

S. Todoroki, Fiber Fuse: Light-Induced Continuous Breakdown of Silica Glass Optical Fiber (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the experimental setups for (a) strain and (b) transverse force characterizations of fused and non-fused POFs.
Fig. 2
Fig. 2 Normalized transmitted optical power plotted as function of strain applied to fused (red) and non-fused (blue) POFs. The points are experimental data, and the lines are linear regressions.
Fig. 3
Fig. 3 Normalized transmitted optical power plotted as a function of transverse force applied to fused (red) and non-fused (blue) POFs. The points are experimental data, and the lines are linear regressions.
Fig. 4
Fig. 4 Fused (red) and non-fused (blue) POF response to temperature (points are experimental data, and the lines are linear regressions).
Fig. 5
Fig. 5 Fused (red) and non-fused (blue) POF response to time after the POFs were immersed into distilled water.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = E ε,

Metrics