Abstract

Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz modulator based on insulator–metal transition in photonic crystal waveguide

Fei Fan, Yu Hou, Zi-Wei Jiang, Xiang-Hui Wang, and Sheng-Jiang Chang
Appl. Opt. 51(20) 4589-4596 (2012)

Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering

Minseok Kim, Junho Jeong, Joyce K. S. Poon, and George V. Eleftheriades
J. Opt. Soc. Am. B 33(5) 980-988 (2016)

Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface

Gaochao Zhou, Penghui Dai, Jingbo Wu, Biaobing Jin, Qiye Wen, Guanghao Zhu, Ze Shen, Caihong Zhang, Lin Kang, Weiwei Xu, Jian Chen, and Peiheng Wu
Opt. Express 25(15) 17322-17328 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref] [PubMed]
  3. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  4. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
    [Crossref] [PubMed]
  5. R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
    [Crossref]
  6. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
    [Crossref] [PubMed]
  7. G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
    [Crossref]
  8. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
    [Crossref]
  9. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  10. Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
    [Crossref] [PubMed]
  11. Y. Urade, Y. Nakata, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition,” Opt. Express 24(5), 4405–4410 (2016).
    [Crossref] [PubMed]
  12. M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
    [Crossref] [PubMed]
  13. N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref] [PubMed]
  14. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  15. V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).
  16. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
    [Crossref] [PubMed]
  17. M. T. Nouman, J. H. Hwang, and J.-H. Jang, “Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface,” Sci. Rep. 6(1), 39062 (2016).
    [Crossref] [PubMed]
  18. S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
    [Crossref]
  19. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
    [Crossref]
  20. J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
    [Crossref]
  21. H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
    [Crossref] [PubMed]
  22. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
    [Crossref]

2016 (6)

R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
[Crossref]

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

M. T. Nouman, J. H. Hwang, and J.-H. Jang, “Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface,” Sci. Rep. 6(1), 39062 (2016).
[Crossref] [PubMed]

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Y. Urade, Y. Nakata, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition,” Opt. Express 24(5), 4405–4410 (2016).
[Crossref] [PubMed]

2015 (7)

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

2014 (4)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

2011 (2)

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

2008 (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2007 (1)

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Alem, N.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Arezoomandan, S.

R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
[Crossref]

Averitt, R. D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Beere, H. E.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

Bingham, C.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Chen, H. T.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, Q.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Chen, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Conley, H. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Cui, Y.

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Davies, A. G.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Degl’Innocenti, R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Engel-Herbert, R.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

Feng, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Ghalichechian, N.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Gokkavas, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

Haglund, R. F.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Haislmaier, R. C.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Hashemi, M. R. M.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Hofmann, S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

Hu, J.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Hu, X.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Hwang, J. H.

M. T. Nouman, J. H. Hwang, and J.-H. Jang, “Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface,” Sci. Rep. 6(1), 39062 (2016).
[Crossref] [PubMed]

Jang, J.-H.

M. T. Nouman, J. H. Hwang, and J.-H. Jang, “Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface,” Sci. Rep. 6(1), 39062 (2016).
[Crossref] [PubMed]

Jarrahi, M.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Jessop, D. S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Ju, H.

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Kafesaki, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Kats, M. A.

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Kidambi, P. R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Kim, H.

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Kitano, M.

Koschny, T.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Li, L.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Li, L. H.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Li, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Liang, G.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Liang, H. K.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Liang, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Linfield, E. H.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Liu, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Manceau, J.-M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Markov, P.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Marvel, R. E.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Massaouti, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Mehmood, M. Q.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Miller, K. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Miyamaru, F.

Mukherjee, D.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

Mun, B. S.

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Nahar, N. K.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Nakanishi, T.

Nakata, Y.

Nouman, M. T.

M. T. Nouman, J. H. Hwang, and J.-H. Jang, “Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface,” Sci. Rep. 6(1), 39062 (2016).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Okimura, K.

Ozbay, E.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Padilla, W. J.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, C.

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Qiao, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Qiu, C.-W.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

Ramanathan, S.

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Ritchie, D. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Rout, S.

Sanphuang, V.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Sensale-Rodriguez, B.

R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
[Crossref]

Sepúlveda, N.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Shah, Y. D.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

Shen, N.-H.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Shrekenhamer, D.

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Sibik, J.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Sonkusale, S.

Soukoulis, C. M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Strikwerda, A. C.

Sun, H.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Sun, L.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Takeda, M. W.

Taylor, A. J.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tzortzakis, S.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Urade, Y.

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Volakis, J. L.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Wang, D.

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Wang, Q. J.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Wang, T.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Weiss, S. M.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Wu, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Xing, H. G.

R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
[Crossref]

Xu, G.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Yan, R.

R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
[Crossref]

Yang, S.-H.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Yang, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Yao, Y.

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Yoon, J.

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, S. F.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Yu, X.

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Zeitler, J. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

Zhang, B.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zhang, H.-T.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

Zhang, L.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

Zhao, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zheng, Y.-X.

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

Zhou, L.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Zhou, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zou, X.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

ACS Nano (1)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

ACS Photonics (3)

G. Liang, X. Hu, X. Yu, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated Terahertz Graphene Modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
[Crossref]

R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, and H. G. Xing, “Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces,” ACS Photonics 3(3), 315–323 (2016).
[Crossref]

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Zhang, M. A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, and F. Capasso, “Current-Modulated Optical Properties of Vanadium Dioxide Thin Films in the Phase Transition Region,” Appl. Phys. Lett. 105(21), 211104 (2014).
[Crossref]

IEEE T. THz Sci. Technol. (1)

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

J. Appl. Phys. (1)

J. Yoon, H. Kim, B. S. Mun, C. Park, and H. Ju, “Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide,” J. Appl. Phys. 119(12), 124503 (2016).
[Crossref]

Nano Lett. (1)

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

H.-T. Zhang, L. Zhang, D. Mukherjee, Y.-X. Zheng, R. C. Haislmaier, N. Alem, and R. Engel-Herbert, “Wafer-scale growth of VO2 thin films using a combinatorial approach,” Nat. Commun. 6(1), 8475 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Terahertz Metamaterial Devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53(5), 057108 (2014).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Phys. Rev. Lett. (1)

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Sci. Rep. (3)

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in Terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

M. T. Nouman, J. H. Hwang, and J.-H. Jang, “Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface,” Sci. Rep. 6(1), 39062 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagrams showing operational characteristics of metasurfaces at (a) 0 mA and (b) 300 mA where incident and transmitted polarization states are illustrated. (c) Metasurface design and dimensions. l1 = 12 μm, l2 = 8 μm, l3 = 5 μm, l4 = 20 μm, l5 = 10 μm, w1 = 100 μm, w2 = 50 μm. (d) Optical images of the fabricated device. The area of the fabricated metasurface device consisting of 480 unit cells is 2 × 2 mm2.
Fig. 2
Fig. 2 VO2 conductivity optimization. (a) THz transmission through a thin lossy film as a function of film conductivity and thickness. Blue and green triangles indicate the insulator and metallic conductivities of orignial unoptimized VO2 film. Black and red circles indicate the insulator and metallic conductivities of optimized VO2 film (b). THz transmission spectra of grown VO2 films. (c) Metasurface equivalent circuit model for vertically (y-) polarized fields. (d) Simulated transmittance T and transmission phase ϕ.
Fig. 3
Fig. 3 Metasurface transmission characteristics for y-polarized incident fields. (a) & (b) transmittance T and transmission phase ϕ. (c) & (d) 2D map of normalized transmission spectra for different values of bias current under y-polarized incident fields. T0 is transmittance at 0 mA and ϕ0 is the optical phase at 0 mA.
Fig. 4
Fig. 4 Transmission characteristics of metasurface for x-polarized incident field. (a) Transmittance T and (b) transmission phase ϕ. Inset shows the equivalent circuit model of the unit cell under x-polarization. (c) Axial ratio and phase characteristics of the transmitted field vs. the applied bias current at 0.46 THz. (d) Polarization ellipses of the transmitted field for selected values of the bias current at 0.46 THz. For the sake of reference, red lines are plotted to show the ideal linear and circular polarizations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t= 1+n 1+n+ Z o σd

Metrics