Abstract

We propose and demonstrate a novel type of sampled Bragg gratings by combining a helically twisted fiber and a Bragg grating. A comb-like spectrum with a series of harmonic narrow resonances is observed, and the influence of geometrical parameters on the resonances is studied. As a special application, the intrinsic nature of the device that contains the Bragg grating and helical fiber spectral responses permits the temperature to be detected from the former, whereas the mechanical torsion is extracted from the latter, suggesting a potential for the simultaneous measurement of these two parameters. The proposed configuration features simplification, easy fabrication, high flexibility, stability, and low cost, and therefore has good prospects for sensor applications, as well as other applications, such as multi-channel filters, distributed Bragg reflectors, etc.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers

Binbin Song, Yinping Miao, Wei Lin, Hao Zhang, Jixuan Wu, and Bo Liu
Opt. Express 21(22) 26806-26811 (2013)

Fiber torsion sensor based on a twist taper in polarization-maintaining fiber

Quan Zhou, Weigang Zhang, Lei Chen, Tieyi Yan, Liyu Zhang, Li Wang, and Biao Wang
Opt. Express 23(18) 23877-23886 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
    [Crossref]
  3. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
    [Crossref]
  4. N. G. R. Broderick and C. M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3634–3646 (1997).
    [Crossref]
  5. M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
    [Crossref]
  6. J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
    [Crossref]
  7. X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
    [Crossref]
  8. J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
    [Crossref]
  9. Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
    [Crossref]
  10. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
    [Crossref]
  11. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [Crossref] [PubMed]
  12. B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
    [Crossref]
  13. C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
    [Crossref]
  14. O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
    [Crossref]
  15. S. Sengupta, S. K. Ghorai, and P. Biswas, “Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity,” IEEE Sens. J. 16(22), 7941–7949 (2016).
    [Crossref]
  16. B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
    [Crossref]
  17. H. Chi, X.-M. Tao, D.-X. Yang, and K.-S. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett. 26(24), 1949–1951 (2001).
    [Crossref] [PubMed]
  18. X. Fang, X. Y. He, C. R. Liao, M. Yang, D. N. Wang, and Y. Wang, “A new method for sampled fiber Bragg grating fabrication by use of both femtosecond laser and CO2 laser,” Opt. Express 18(3), 2646–2654 (2010).
    [Crossref] [PubMed]
  19. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  20. C. Koutsides, E. Davies, K. Kalli, M. Komodromos, T. Allsop, D. J. Webb, and L. Zhang, “Superstructure fiber gratings via single step femtosecond laser inscription,” J. Lightwave Technol. 30(8), 1229–1236 (2012).
    [Crossref]
  21. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
    [Crossref]
  22. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high channel-count fiber Bragg gratings,” J. Lightwave Technol. 25(9), 2739–2750 (2007).
    [Crossref]
  23. H. Lee and G. P. Agrawal, “Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation,” IEEE Photonics Technol. Lett. 15(8), 1091–1093 (2003).
    [Crossref]
  24. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
    [Crossref] [PubMed]
  25. O. V. Ivanov, “Fabrication of long-period fiber gratings by twisting a standard single-mode fiber,” Opt. Lett. 30(24), 3290–3292 (2005).
    [Crossref] [PubMed]
  26. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
    [Crossref]
  27. M. Napiorkowski and W. Urbanczyk, “Coupling between core and cladding modes in a helical core fiber with large core offset,” J. Opt. 18(5), 055601 (2016).
    [Crossref]
  28. G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
    [Crossref]
  29. J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
    [Crossref]
  30. K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).
  31. R. Subramanian, C. Zhu, H. Zhao, and H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
    [Crossref]
  32. L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
    [Crossref]
  33. L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [Crossref] [PubMed]
  34. P. Wang and H. Li, “Helical long-period grating formed in a thinned fiber and its application to a refractometric sensor,” Appl. Opt. 55(6), 1430–1434 (2016).
    [Crossref] [PubMed]
  35. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
    [Crossref] [PubMed]
  36. P. St. J. Russell, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos Trans A Math Phys Eng Sci 375(2087), 20150440 (2017).
    [Crossref] [PubMed]
  37. J. Li, P. Fan, L. P. Sun, C. Wu, and B. O. Guan, “Few-period helically twisted all-solid photonic bandgap fibers,” Opt. Lett. 43(4), 655–658 (2018).
    [Crossref] [PubMed]
  38. A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
    [Crossref]

2018 (2)

R. Subramanian, C. Zhu, H. Zhao, and H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

J. Li, P. Fan, L. P. Sun, C. Wu, and B. O. Guan, “Few-period helically twisted all-solid photonic bandgap fibers,” Opt. Lett. 43(4), 655–658 (2018).
[Crossref] [PubMed]

2017 (2)

P. St. J. Russell, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos Trans A Math Phys Eng Sci 375(2087), 20150440 (2017).
[Crossref] [PubMed]

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

2016 (4)

M. Napiorkowski and W. Urbanczyk, “Coupling between core and cladding modes in a helical core fiber with large core offset,” J. Opt. 18(5), 055601 (2016).
[Crossref]

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

P. Wang and H. Li, “Helical long-period grating formed in a thinned fiber and its application to a refractometric sensor,” Appl. Opt. 55(6), 1430–1434 (2016).
[Crossref] [PubMed]

S. Sengupta, S. K. Ghorai, and P. Biswas, “Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity,” IEEE Sens. J. 16(22), 7941–7949 (2016).
[Crossref]

2014 (1)

2012 (3)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
[Crossref]

C. Koutsides, E. Davies, K. Kalli, M. Komodromos, T. Allsop, D. J. Webb, and L. Zhang, “Superstructure fiber gratings via single step femtosecond laser inscription,” J. Lightwave Technol. 30(8), 1229–1236 (2012).
[Crossref]

2010 (2)

2009 (1)

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

2008 (1)

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

2007 (1)

2006 (1)

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

2005 (1)

2004 (2)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

2003 (2)

H. Lee and G. P. Agrawal, “Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation,” IEEE Photonics Technol. Lett. 15(8), 1091–1093 (2003).
[Crossref]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[Crossref]

2002 (2)

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

2001 (2)

2000 (2)

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

1999 (1)

A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
[Crossref]

1998 (1)

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

1997 (2)

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

N. G. R. Broderick and C. M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3634–3646 (1997).
[Crossref]

1996 (1)

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

1995 (2)

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

1994 (1)

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Agrawal, G. P.

H. Lee and G. P. Agrawal, “Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation,” IEEE Photonics Technol. Lett. 15(8), 1091–1093 (2003).
[Crossref]

Albert, J.

A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
[Crossref]

Alexeyev, C. N.

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Allsop, T.

Asseh, A.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Bennion, I.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Beravat, R.

P. St. J. Russell, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos Trans A Math Phys Eng Sci 375(2087), 20150440 (2017).
[Crossref] [PubMed]

Biancalana, F.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Biswas, P.

S. Sengupta, S. K. Ghorai, and P. Biswas, “Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity,” IEEE Sens. J. 16(22), 7941–7949 (2016).
[Crossref]

Bor, S. S.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Brebner, J. L.

A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
[Crossref]

Broderick, N. G. R.

N. G. R. Broderick and C. M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3634–3646 (1997).
[Crossref]

Cao, X. B.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Chen, K.-S.

Chen, X. F.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

Chi, H.

Chow, J.

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Churikov, V. M.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Conti, C.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Davies, E.

de Sterke, C. M.

N. G. R. Broderick and C. M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3634–3646 (1997).
[Crossref]

Dhosi, G.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Dong, X. Y.

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Eggleton, B. J.

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Fan, C. C.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

Fan, P.

Fang, X.

Frazão, O.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Fu, M. Y.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Genack, A. Z.

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Ghorai, S. K.

S. Sengupta, S. K. Ghorai, and P. Biswas, “Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity,” IEEE Sens. J. 16(22), 7941–7949 (2016).
[Crossref]

Guan, B. O.

J. Li, P. Fan, L. P. Sun, C. Wu, and B. O. Guan, “Few-period helically twisted all-solid photonic bandgap fibers,” Opt. Lett. 43(4), 655–658 (2018).
[Crossref] [PubMed]

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Gwandu, B. A. L.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

He, X. Y.

Hu, S.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

Hubner, J.

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

Ibsen, M.

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

Ivanov, O. V.

Jianliang, Y.

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Jovanovic, N.

Ju, H. J.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

Kalli, K.

Kang, M. S.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Komodromos, M.

Kong, X. D.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

Kopp, V. I.

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Koutsides, C.

Kristensen, M.

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

Krug, P. A.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Lee, H.

H. Lee and G. P. Agrawal, “Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation,” IEEE Photonics Technol. Lett. 15(8), 1091–1093 (2003).
[Crossref]

Lee, H. W.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Li, H.

Li, J.

Li, M.

Li, Y.

Liang, J.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

Liao, C. R.

Lin, C. M.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Liu, W. F.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Liu, Y.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

Liu, Y. C.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Liu, Y. Q.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

Luo, Y.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

Marques, P. V. S.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Marshall, G. D.

Nam Quoc, N.

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Napiorkowski, M.

M. Napiorkowski and W. Urbanczyk, “Coupling between core and cladding modes in a helical core fiber with large core offset,” J. Opt. 18(5), 055601 (2016).
[Crossref]

Neugroschl, D.

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Ouellette, F.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Qian, J. R.

J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
[Crossref]

Rego, G.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Ren, K. L.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

Ren, L. Y.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

Romero, R.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Roorda, S.

A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
[Crossref]

Rothenberg, J. E.

Russell, P. St. J.

P. St. J. Russell, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos Trans A Math Phys Eng Sci 375(2087), 20150440 (2017).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Sahlgren, B. E.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Salgado, H. M.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Sandgren, S.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Santos, J. L.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Sceats, M. G.

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

Sengupta, S.

S. Sengupta, S. K. Ghorai, and P. Biswas, “Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity,” IEEE Sens. J. 16(22), 7941–7949 (2016).
[Crossref]

Sheng, H. J.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Sheng, Y.

Shu, X.

Shu, X. W.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

Shvets, G.

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

Singer, J.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Steel, M. J.

Stephens, T.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Storoy, H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Stubbe, R. A. H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Su, J.

J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
[Crossref]

Subramanian, R.

R. Subramanian, C. Zhu, H. Zhao, and H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Sugden, K.

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Sun, L. P.

Swee Chuan, T.

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Tam, H. Y.

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tao, X. M.

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tao, X.-M.

Tchebotareva, A. L.

A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
[Crossref]

Tien, C. L.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Town, G.

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Trendafilov, S.

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

Urbanczyk, W.

M. Napiorkowski and W. Urbanczyk, “Coupling between core and cladding modes in a helical core fiber with large core offset,” J. Opt. 18(5), 055601 (2016).
[Crossref]

Wang, D. N.

Wang, P.

Wang, T. Y.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

Wang, Y.

Webb, D. J.

Weiss, T.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Williams, R. J.

Withford, M. J.

Wong, G. K. L.

P. St. J. Russell, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos Trans A Math Phys Eng Sci 375(2087), 20150440 (2017).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Wu, C.

Wu, Z. X.

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

Xian, L.

Xie, S. Z.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

Xue, L. L.

J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
[Crossref]

Yang, D.-X.

Yang, L.

J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
[Crossref]

Yang, M.

Yavorsky, M. A.

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Zauner, D.

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

Zhang, L.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

C. Koutsides, E. Davies, K. Kalli, M. Komodromos, T. Allsop, D. J. Webb, and L. Zhang, “Superstructure fiber gratings via single step femtosecond laser inscription,” J. Lightwave Technol. 30(8), 1229–1236 (2012).
[Crossref]

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

Zhang, W.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

Zhao, H.

R. Subramanian, C. Zhu, H. Zhao, and H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Zhu, C.

R. Subramanian, C. Zhu, H. Zhao, and H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (4)

M. Ibsen, B. J. Eggleton, M. G. Sceats, and F. Ouellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electron. Lett. 31(1), 37–38 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

J. R. Qian, J. Su, L. L. Xue, and L. Yang, “Coupled-mode analysis for chiral fiber long-period gratings using local mode approach,” IEEE J. Quantum Electron. 48(1), 49–55 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (8)

K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and Efficient Fabrication of Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 29(14), 1175–1178 (2017).

R. Subramanian, C. Zhu, H. Zhao, and H. Li, “Torsion, strain, and temperature sensor based on helical long-period fiber gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

H. Lee and G. P. Agrawal, “Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation,” IEEE Photonics Technol. Lett. 15(8), 1091–1093 (2003).
[Crossref]

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

J. Hubner, D. Zauner, and M. Kristensen, “Strong sampled Bragg gratings for WDM applications,” IEEE Photonics Technol. Lett. 10(4), 552–554 (1998).
[Crossref]

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(11), 1501–1503 (2000).
[Crossref]

J. Chow, G. Town, B. J. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fibre laser using in-fibre comb filter,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

IEEE Sens. J. (3)

S. Sengupta, S. K. Ghorai, and P. Biswas, “Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity,” IEEE Sens. J. 16(22), 7941–7949 (2016).
[Crossref]

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

M. Napiorkowski and W. Urbanczyk, “Coupling between core and cladding modes in a helical core fiber with large core offset,” J. Opt. 18(5), 055601 (2016).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A, Pure Appl. Opt. 11(7), 074007 (2009).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. L. Tchebotareva, J. L. Brebner, S. Roorda, and J. Albert, “Effect of proton implantation on the photosensitivity of SMF-28 optical fiber,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 687–691 (1999).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Philos Trans A Math Phys Eng Sci (1)

P. St. J. Russell, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos Trans A Math Phys Eng Sci 375(2087), 20150440 (2017).
[Crossref] [PubMed]

Phys. Rev. A (1)

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

N. G. R. Broderick and C. M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3634–3646 (1997).
[Crossref]

Science (2)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral Fiber Gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2–3), 133–139 (2002).
[Crossref]

Other (1)

A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the proposed SFBG, combined by a helically twisted fiber and a Bragg grating. The helical pitch is Λhelical (yielding a twist rate of α = 2π/Λhelical), the pitch of the FBG is ΛFBG, and the total length of the SFBG is L.
Fig. 2
Fig. 2 Typical spectral characteristics of an SFBG, with Λhelical = 504.0μm (yielding α = 12.47 rad⋅mm−1), ΛFBG = 544.6 nm, and L = 5.0 mm. The inset shows an enlarged view of the harmonic FBG resonances in the spectra.
Fig. 3
Fig. 3 Reflection spectra for a number of SFBGs with (a) different helical pitches but the same FBG pitch and (b) different FBG pitches but the same helical pitch, respectively.
Fig. 4
Fig. 4 (a) Transmission spectra at 26 °C and 95 °C, respectively, for the SFBG with Λhelical = 504.0 μm, ΛFBG = 544.6 nm, and L = 5.0 mm. (b) Measured wavelength shifts as a function of temperature for the helical fiber and FBG responses, respectively, of the SFBG.
Fig. 5
Fig. 5 (a) Transmission spectra at different mechanical torsion rates of αM = − 0.075 rad·mm −1, 0 rad·mm −1, and 0.075 rad·mm −1, respectively, for the device with Λhelical = 504.0 μm, ΛFBG = 544.6 nm, and L = 5.0 mm. (b) Measured wavelength shifts as a function of the mechanical torsion rate αM for the helical fiber and FBG responses, respectively, of the SFBG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δβ kπ/P =0,
ΔT= 1 S T FBG Δ λ FBG , α M = 1 S M helical ( Δ λ helical S T helical S T FBG Δ λ FBG ).

Metrics