Abstract

Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it’s still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absorptivity enhancement of higher-order electric sextupole plasmonic modes by the outer-square inner-ring coupled resonators

Lei Zhao, Qinglin Niu, Zhihong He, and Shikui Dong
Opt. Mater. Express 8(11) 3359-3372 (2018)

Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns

Xiutao Huang, Conghui Lu, Cancan Rong, and Minghai Liu
Opt. Mater. Express 8(9) 2520-2531 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  3. F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol. 9(1), 55–61 (2010).
    [Crossref]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  6. N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88(20), 207403 (2002).
    [Crossref] [PubMed]
  7. H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).
  8. H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
    [Crossref]
  9. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  10. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  11. J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
    [Crossref]
  12. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
    [Crossref]
  13. S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
    [Crossref]
  14. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).
  15. K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured-Insulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 388 (2017).
    [Crossref]
  16. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
    [Crossref] [PubMed]
  17. A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
    [Crossref] [PubMed]
  18. D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
    [Crossref]
  19. S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
    [Crossref]
  20. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
    [Crossref] [PubMed]
  21. X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
    [Crossref] [PubMed]
  22. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  23. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
    [Crossref]
  24. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref] [PubMed]
  25. S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” Transducers 2017, Kaohsiung, TAIWAN, June 18–22, 2017.
    [Crossref]
  26. J. Grant, M. Kenney, Y. D. Shan, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
    [Crossref]
  27. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
    [Crossref]
  28. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  29. M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
    [Crossref]
  30. S. Fan and Y. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
    [Crossref]
  31. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
    [Crossref]
  32. D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
    [Crossref]
  33. G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
    [Crossref]
  34. X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
    [Crossref]
  35. E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
    [Crossref]
  36. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  37. C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
    [Crossref]
  38. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]

2018 (4)

S. Fan and Y. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

J. Grant, M. Kenney, Y. D. Shan, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref]

2017 (8)

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured-Insulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 388 (2017).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

2016 (1)

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

2015 (4)

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref] [PubMed]

2014 (2)

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

2013 (4)

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

2012 (3)

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol. 9(1), 55–61 (2010).
[Crossref]

2009 (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
[Crossref] [PubMed]

2007 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2002 (1)

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88(20), 207403 (2002).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Aslan, E.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Bilotti, F.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol. 9(1), 55–61 (2010).
[Crossref]

Bingham, C.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Brückl, H.

Brueckl, H.

Cao, Y.

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Chen, C.

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, L. Y.

Chen, Q.

Cheng, D.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Cheng, Y.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Choi, E. H.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

J. Grant, M. Kenney, Y. D. Shan, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref]

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

Dayal, G.

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Ding, G.

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

Escorcia-Carranza, I.

J. Grant, M. Kenney, Y. D. Shan, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref]

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Espiau De Lamaestre, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Fan, K.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Fan, S.

S. Fan and Y. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Gao, J.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88(20), 207403 (2002).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Gong, R.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Gough, J.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Grant, J.

J. Grant, M. Kenney, Y. D. Shan, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref]

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

Guo, C.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Humphreys, M.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Jang, W. H.

Joannopoulos, J. D.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

Jun, W.

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Karalis, A.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kaya, S.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Kenney, M.

J. Grant, M. Kenney, Y. D. Shan, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref]

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Khalid, A.

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Kim, K. W.

Kimata, M.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Komoda, J.

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Korkmaz, S.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Le, K. Q.

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured-Insulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 388 (2017).
[Crossref]

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Lee, Y.

Li, C.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Li, H.

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

Li, Q.

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Li, Y.

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Liu, S.

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

Liu, X.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Liu, Y.

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Lu, X.

Ma, Y.

Maier, T.

Masuda, K.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

McCrindle, I. J. H.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Montoya, J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Ngo, Q. M.

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured-Insulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 388 (2017).
[Crossref]

Nguyen, T. K.

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured-Insulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 388 (2017).
[Crossref]

Nie, Y.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88(20), 207403 (2002).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Park, J. W.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Qiu, M.

Rhee, J. Y.

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Ruan, Z.

Saha, S. C.

Saracoglu, O. G.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Shah, Y. D.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Shan, Y. D.

Sheng, Y.

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Singh, R.

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Soci, C.

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Solanki, A.

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Song, Y.

S. Fan and Y. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

Sriram, S.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, V.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Suen, J. Y.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Sum, T. C.

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Takagawa, Y.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Tao, K.

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

Tricarico, S.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol. 9(1), 55–61 (2010).
[Crossref]

Tuong, P. V.

Turkmen, M.

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Vegni, L.

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol. 9(1), 55–61 (2010).
[Crossref]

Wang, B. X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Wang, S.

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

Wang, X.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Xiao, D.

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

Yang, H.

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

Yang, Y.

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, L.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

Yu Chin, X.

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Zhang, H.

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Zhang, L.

Zhang, T.

Zhang, Y.

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Zhao, D.

Zheng, D.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

ACS Nano (1)

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Adv. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Appl. Phys. Express (1)

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

Appl. Phys. Lett. (3)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

H. Li, S. Liu, S. Liu, S. Wang, G. Ding, H. Yang, and Z. Yu, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106, 083511 (2015).

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured-Insulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 388 (2017).
[Crossref]

IEEE Photonics J. (1)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

IEEE Trans. NanoTechnol. (1)

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol. 9(1), 55–61 (2010).
[Crossref]

J. Appl. Phys. (2)

S. Fan and Y. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

G. Dayal, A. Solanki, X. Yu Chin, T. C. Sum, C. Soci, and R. Singh, “High- Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites,” J. Appl. Phys. 122(7), 073101 (2017).
[Crossref]

Laser Photonics Rev. (1)

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Opt. Commun. (2)

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, and C. Guo, “Multiple infrared bands absorber based on multilayer gratings,” Opt. Commun. 410, 438–442 (2018).
[Crossref]

Opt. Eng. (2)

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optics (1)

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optics 4, 276–279 (2017).

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Left-Handed Materials Do Not Make a Perfect Lens,” Phys. Rev. Lett. 88(20), 207403 (2002).
[Crossref] [PubMed]

Plasmonics (1)

H. Zhang, Y. Cao, Y. Liu, Y. Li, and Y. Zhang, “Electromagnetically Induced Transparency Based on Cascaded π-Shaped Graphene Nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Prog. Electromagnetics Res. (1)

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Sci. Rep. (2)

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu, and M. Turkmen, “Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array,” Sens. Actuators B Chem. 243, 617–625 (2017).
[Crossref]

Other (1)

S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” Transducers 2017, Kaohsiung, TAIWAN, June 18–22, 2017.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of our designed MPA based on the basic resonators with a fundamental mode and two higher-order modes; (b) Spectral absorptivity of the basic ring-strip structure and the ring structure.
Fig. 2
Fig. 2 The x-y cross-section view for the distribution of z component of electric fields Ez at (a) f1 = 69.8 THz, (b) f2 = 164.1 THz, and (c) f3 = 216.6 THz.
Fig. 3
Fig. 3 (a) Spectral absorptivity and (b) absorption peaks frequency of the MPA based on the ring-strip resonators as functions of the inner diameter of the ring; (c) Spectral absorptivity and (d) absorption peaks frequency as functions of the width of the strip. The spectral absorptivity of the ring-strip structure as functions of the incident angles for (e) p-polariton waves and (f) s-polariton waves.
Fig. 4
Fig. 4 (a) Spectral absorptivity of the ring-strip structure as functions of the surrounding environment refractive index increasing from 1.0 to 1.6; Absorption peaks frequency of (b) the fundamental electric dipole mode, (c) the higher-order electric quadrupole mode, and (d) the higher-order electric octopole mode shift against the surrounding environment refractive index.
Fig. 5
Fig. 5 (a) Schematic diagram and (b) spectral absorptivity of our designed MPA based on the super resonators consisting of two different sized basic resonators A and B. (c) The spectral absorptivity as functions of the polariton angles.
Fig. 6
Fig. 6 The x-y cross-section view for the distribution of z component of electric fields Ez at (a) 68.6 THz, (b) 82.9 THz, (c) 162.8 THz, (d) 204.5 THz, (e) 213.8 THz, and (f) 222.9 THz.
Fig. 7
Fig. 7 (a) Schematic diagram and (b) spectral absorptivity of our designed MPA based on the super resonators consisting of four different sized basic resonators C, D, E, and F. (c) The spectral absorptivity as functions of the polariton angles.
Fig. 8
Fig. 8 The x-y cross-section view for the distribution of z component of electric fields Ez at (a) 59 THz, (b) 72.6 THz, (c) 88.1 THz, (d) 95.8 THz, (e) 146.3 THz, (f) 168.5 THz, (g) 188.2 THz, (h) 202.3 THz, (i) 211 THz, (j) 217.5 THz, (k) 231.7 THz, and (l) 245.9 THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FOM= S FWHM
S= Δf Δn

Metrics