Abstract

Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing

Amos Martinez, Kazuyuki Fuse, Bo Xu, and Shinji Yamashita
Opt. Express 18(22) 23054-23061 (2010)

Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber

Grzegorz Sobon, Jaroslaw Sotor, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, and Krzysztof M. Abramski
Opt. Express 21(10) 12797-12802 (2013)

All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber

Hwanseong Jeong, Sun Young Choi, Mi Hye Kim, Fabian Rotermund, Yong-Ho Cha, Do-Young Jeong, Sang Bae Lee, Kwanil Lee, and Dong-Il Yeom
Opt. Express 24(13) 14152-14158 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
    [Crossref]
  2. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
    [Crossref]
  3. Y.-G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31(6), 697–699 (2006).
    [Crossref] [PubMed]
  4. M. H. Al-Mansoori, M. K. Abd-Rahman, F. R. Mahamd Adikan, and M. A. Mahdi, “Widely tunable linear cavity multiwavelength Brillouin-Erbium fiber lasers,” Opt. Express 13(9), 3471–3476 (2005).
    [Crossref] [PubMed]
  5. J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
    [Crossref]
  6. J. Yao, J. Yao, and Z. Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express 12(19), 4529–4534 (2004).
    [Crossref] [PubMed]
  7. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  8. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004).
    [Crossref] [PubMed]
  9. Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
    [Crossref]
  10. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  11. X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
    [Crossref]
  12. Q. Sheng, M. Feng, W. Xin, T. Han, Y. Liu, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21(12), 14859–14866 (2013).
    [Crossref] [PubMed]
  13. W. Xin, Z. B. Liu, Q. W. Sheng, M. Feng, L. G. Huang, P. Wang, W. S. Jiang, F. Xing, Y. G. Liu, and J. G. Tian, “Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser,” Opt. Express 22(9), 10239–10247 (2014).
    [Crossref] [PubMed]
  14. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  15. Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
    [Crossref]
  16. N. Zhao, M. Liu, H. Liu, X.-W. Zheng, Q.-Y. Ning, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
    [Crossref] [PubMed]
  17. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
    [Crossref] [PubMed]
  18. H. R. Yang, “Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber,” J. Mod. Opt. 62(17), 1363–1367 (2015).
    [Crossref]
  19. F. D. Souza and K. M. Kadish, Handbook of Carbon Nano Materials (World Scientific, 2010), Chap. 5.
  20. A. Kaniyoor and S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Adv. 2(3), 032183 (2012).
    [Crossref]
  21. H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
    [Crossref] [PubMed]
  22. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
    [Crossref]
  23. M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
    [Crossref]
  24. D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
    [Crossref]
  25. K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
    [Crossref]
  26. T. S. Kavetskyy and A. L. Stepanov, Radiation Effects in Materials (InTech, 2016), Chap. 11.
  27. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
    [Crossref] [PubMed]
  28. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
    [Crossref] [PubMed]
  29. J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
    [Crossref]
  30. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  31. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
    [Crossref]
  32. Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
    [Crossref]
  33. Y. Wang, S.-U. Alam, E. D. Obraztsova, A. S. Pozharov, S. Y. Set, and S. Yamashita, “Generation of stretched pulses and dissipative solitons at 2 μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers,” Opt. Lett. 41(16), 3864–3867 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

H. R. Yang, “Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber,” J. Mod. Opt. 62(17), 1363–1367 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

2014 (7)

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
[Crossref]

W. Xin, Z. B. Liu, Q. W. Sheng, M. Feng, L. G. Huang, P. Wang, W. S. Jiang, F. Xing, Y. G. Liu, and J. G. Tian, “Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser,” Opt. Express 22(9), 10239–10247 (2014).
[Crossref] [PubMed]

N. Zhao, M. Liu, H. Liu, X.-W. Zheng, Q.-Y. Ning, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
[Crossref] [PubMed]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (4)

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

A. Kaniyoor and S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Adv. 2(3), 032183 (2012).
[Crossref]

2010 (5)

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[Crossref] [PubMed]

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

2008 (2)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

2007 (2)

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (2)

2002 (1)

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

2001 (1)

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Abd-Rahman, M. K.

Abramski, K. M.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Achete, C. A.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Alam, S.-U.

Al-Mansoori, M. H.

Alves, E. S.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Bao, Q.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bennion, I.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Brant, J. C.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Cai, Z.

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Cai, Z. P.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Capaz, R. B.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Chen, H.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Chen, L. R.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

Chen, S.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Chen, Y.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Cheng, H.

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Deng, Z.

Dikin, D. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ding, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Du, J.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Elias, D. C.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Feng, M.

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Fuse, K.

Giannone, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

Grodecki, K.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

Han, T.

Han, Y.-G.

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

He, X.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
[Crossref]

Huang, L. G.

Huang, Y.

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Inoue, Y.

Jablonski, M.

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Jiang, G.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Jiang, W. S.

Jorio, A.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Jose, R.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Kaniyoor, A.

A. Kaniyoor and S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Adv. 2(3), 032183 (2012).
[Crossref]

Kim, H. J.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Kim, J.-Y.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Knize, R. J.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Kohlhaas, K. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Krajewska, A.

Lam, Y. L.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Lee, C.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Lee, S. B.

Lee, S.-M.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Lim, C. T.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Lim, Y. S.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Liu, A.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Liu, C.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Liu, H.

Liu, J.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Liu, M.

Liu, Y.

Liu, Y. G.

Liu, Z.

Liu, Z. B.

Loh, K. P.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Lucchese, M. M.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Luo, A.-P.

Luo, Z.

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Luo, Z. Q.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Luo, Z.-C.

Mafra, D. L.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Mahamd Adikan, F. R.

Mahdi, M. A.

Malard, L. M.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Martinez, A.

Martins Ferreira, E. H.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Maruyama, S.

Moutinho, M. V. O.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Murakami, Y.

Nampoori, V. P. N.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Nguyen, S. B. T.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ning, Q.-Y.

Obraztsova, E. D.

Oh, Y.-S.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Pasternak, I.

Pimenta, M. A.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Piner, R. D.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Plentz, F.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Pozharov, A. S.

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Pudo, D.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

Radhakrishnan, P.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Ramakrishna, S.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Ramaprabhu, S.

A. Kaniyoor and S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Adv. 2(3), 032183 (2012).
[Crossref]

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Ruan, S.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Ruoff, R. S.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Samsonidze, G.

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Set, S. Y.

Sheeba, M.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Sheng, Q.

Sheng, Q. W.

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Sobon, G.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Stankovich, S.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Stavale, F.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Strupinski, W.

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Tang, P.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Tarka, J.

Thomas, K. J.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Tian, J.

Tian, J. G.

Tjin, S. C.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tran, T. V. A.

Vallahan, C. P. G.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Vilani, C.

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Wang, J. Z.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Wang, P.

Wang, S.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Wang, Y.

Wen, S.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Wu, M.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Wu, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Xin, W.

Xing, F.

Xu, B.

Xu, H. Y.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Xu, M.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
[Crossref]

Xu, W.-C.

Yaguchi, H.

Yamashita, S.

Yan, P.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Yang, H. R.

H. R. Yang, “Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber,” J. Mod. Opt. 62(17), 1363–1367 (2015).
[Crossref]

Yang, J.-X.

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Yang, Y.-H.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Yao, J.

J. Yao, J. Yao, and Z. Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express 12(19), 4529–4534 (2004).
[Crossref] [PubMed]

J. Yao, J. Yao, and Z. Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express 12(19), 4529–4534 (2004).
[Crossref] [PubMed]

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Ye, C.

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Ye, C. C.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Yoon, D. H.

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

Zhang, H.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
[Crossref]

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Zhang, L.

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

Zhang, X.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
[Crossref]

Zhao, C.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zhao, N.

Zheng, X.-W.

Zhou, M.

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Zhou, Y.

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, J.-X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

AIP Adv. (1)

A. Kaniyoor and S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Adv. 2(3), 032183 (2012).
[Crossref]

Appl. Phys. Lett. (3)

J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, “Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator,” Appl. Phys. Lett. 104(25), 251112 (2014).
[Crossref]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Carbon (2)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon 48(5), 1592–1597 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 55–61 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 14(2), 143–145 (2002).
[Crossref]

J. Mod. Opt. (1)

H. R. Yang, “Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber,” J. Mod. Opt. 62(17), 1363–1367 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallahan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Laser Phys. Lett. (3)

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9(8), 581–586 (2012).
[Crossref]

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett. 9(3), 229–233 (2012).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Opt. Commun. (1)

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Liu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3), 341–345 (2001).
[Crossref]

Opt. Express (7)

J. Yao, J. Yao, and Z. Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express 12(19), 4529–4534 (2004).
[Crossref] [PubMed]

M. H. Al-Mansoori, M. K. Abd-Rahman, F. R. Mahamd Adikan, and M. A. Mahdi, “Widely tunable linear cavity multiwavelength Brillouin-Erbium fiber lasers,” Opt. Express 13(9), 3471–3476 (2005).
[Crossref] [PubMed]

N. Zhao, M. Liu, H. Liu, X.-W. Zheng, Q.-Y. Ning, A.-P. Luo, Z.-C. Luo, and W.-C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
[Crossref] [PubMed]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

Q. Sheng, M. Feng, W. Xin, T. Han, Y. Liu, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21(12), 14859–14866 (2013).
[Crossref] [PubMed]

W. Xin, Z. B. Liu, Q. W. Sheng, M. Feng, L. G. Huang, P. Wang, W. S. Jiang, F. Xing, Y. G. Liu, and J. G. Tian, “Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser,” Opt. Express 22(9), 10239–10247 (2014).
[Crossref] [PubMed]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of LA and TO photon dispersion relations of graphene near the Dirac point by double resonance Raman scattering,” Phys. Rev. B 76(23), 233407 (2007).
[Crossref]

Sci. Rep. (2)

H. J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: Fracture- and wear-resistance effects of graphene on alumina matrix,” Sci. Rep. 4(1), 5176 (2014).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Other (2)

F. D. Souza and K. M. Kadish, Handbook of Carbon Nano Materials (World Scientific, 2010), Chap. 5.

T. S. Kavetskyy and A. L. Stepanov, Radiation Effects in Materials (InTech, 2016), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Microscopic image and (b) height map of GPTF on polymer substrate, FESEM images of GPTF on a fiber ferrule with magnification sized of (c) 80x and (d) 1500x, and (e) Raman spectrum of GPTF at the fiber core region.
Fig. 2
Fig. 2 (a) Nonlinear saturable absorption measurement setup and (b) measurement of GPSA.
Fig. 3
Fig. 3 Experimental setup for dual-wavelength mode-locked fiber laser, denoted as MLFL-U.
Fig. 4
Fig. 4 Output spectrum of (a) λ(-) and (b) λ( + ) optical loops with spectral bandwidth measurement in (c) and (d), respectively as a function of pump powers.
Fig. 5
Fig. 5 Autocorrelation trace of (a) λ(-) and (b) λ( + ) optical loops.
Fig. 6
Fig. 6 Oscilloscope trace of (a) λ(-) and (b) λ( + ) optical loops.
Fig. 7
Fig. 7 Frequency spectrum of (a) λ(-) and (b) λ( + ) optical loops.
Fig. 8
Fig. 8 Output power and pulse energy development for the (a) λ(-) and (b) λ( + ) optical loops of MLFL-U.
Fig. 9
Fig. 9 Stability test of (a) λ(-) and (b) λ( + ) optical loops of MLFL-U, (c) power stability over an observation time of 60 minute.

Tables (2)

Tables Icon

Table 1 TBP value for executed pulses from MLFL-U.

Tables Icon

Table 2 Summary of research comparison to previous works.

Metrics