Abstract

We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Regularized inverse holographic volume reconstruction for 3D particle tracking

Kevin Mallery and Jiarong Hong
Opt. Express 27(13) 18069-18084 (2019)

High fidelity digital inline holographic method for 3D flow measurements

Mostafa Toloui and Jiarong Hong
Opt. Express 23(21) 27159-27173 (2015)

Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results

Daniel Allano, Mokrane Malek, Françoise Walle, Frédéric Corbin, Gilles Godard, Sébastien Coëtmellec, Bertrand Lecordier, Jean-Marc Foucaut, and Denis Lebrun
Appl. Opt. 52(1) A9-A17 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. P. Arroyo and K. D. Hinsch, “Recent developments of PIV towards 3D measurements,” Top. Appl. Phys. 112, 127–154 (2008).
    [Crossref]
  2. S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol.in press.
  3. J. Katz and J. Sheng, “Applications of Holography in Fluid Mechanics and Particle Dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
    [Crossref]
  4. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
    [Crossref] [PubMed]
  5. S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
    [Crossref]
  6. M. Toloui and J. Hong, “High fidelity digital inline holographic method for 3D flow measurements,” Opt. Express 23(21), 27159–27173 (2015).
    [Crossref] [PubMed]
  7. M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28(4), 44009 (2017).
    [Crossref]
  8. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
    [Crossref]
  9. S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 24004 (2013).
    [Crossref]
  10. D. Allano, M. Malek, F. Walle, F. Corbin, G. Godard, S. Coëtmellec, B. Lecordier, J. M. Foucaut, and D. Lebrun, “Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results,” Appl. Opt. 52(1), A9–A17 (2013).
    [Crossref] [PubMed]
  11. L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holographic imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47(25), 4501–4508 (2008).
    [Crossref] [PubMed]
  12. P. Petruck, R. Riesenberg, and R. Kowarschik, “Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy,” Appl. Opt. 51(13), 2333–2340 (2012).
    [Crossref] [PubMed]
  13. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt. 52(1), A68–A80 (2013).
    [Crossref] [PubMed]
  14. N. R. Subedi, N. B. Fowler, and M. J. Berg, “Backscatter digital holography of microparticles,” Opt. Express 21(10), 12611–12616 (2013).
    [Crossref] [PubMed]
  15. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  16. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
    [Crossref] [PubMed]
  17. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [Crossref] [PubMed]
  18. S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic PIV (LiFH-PIV) for wind- tunnel applications : Off-site reconstruction of deep- volume real particle images,” Appl. Opt. 15, 1–9 (2004).
  19. S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15(4), 613–621 (2004).
    [Crossref]
  20. E. Hecht, “Optics 4th edition,” Opt. 4th Ed. by Eugene Hecht Read. MA AddisonWesley Publ. Co. 2001 1, 122 (2001).
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  22. T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography: With MATLAB (Cambridge University Press, 2014).
  23. Y. Endo, T. Shimobaba, T. Kakue, and T. Ito, “GPU-accelerated compressive holography,” Opt. Express 24(8), 8437–8445 (2016).
    [Crossref] [PubMed]
  24. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [Crossref] [PubMed]
  25. A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm,” Soc. Ind. Appl. Math. J. Imaging Sci. 2, 183–202 (2009).
  26. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
    [Crossref]

2017 (1)

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28(4), 44009 (2017).
[Crossref]

2016 (1)

2015 (1)

2013 (4)

2012 (1)

2011 (1)

2010 (1)

J. Katz and J. Sheng, “Applications of Holography in Fluid Mechanics and Particle Dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

2009 (2)

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref] [PubMed]

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm,” Soc. Ind. Appl. Math. J. Imaging Sci. 2, 183–202 (2009).

2008 (4)

M. P. Arroyo and K. D. Hinsch, “Recent developments of PIV towards 3D measurements,” Top. Appl. Phys. 112, 127–154 (2008).
[Crossref]

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holographic imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47(25), 4501–4508 (2008).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

2004 (3)

2003 (1)

1999 (1)

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Allano, D.

Arroyo, M. P.

M. P. Arroyo and K. D. Hinsch, “Recent developments of PIV towards 3D measurements,” Top. Appl. Phys. 112, 127–154 (2008).
[Crossref]

Beck, A.

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm,” Soc. Ind. Appl. Math. J. Imaging Sci. 2, 183–202 (2009).

Berg, M. J.

Bevilacqua, F.

Brady, D. J.

Cao, L.

Choi, K.

Coëtmellec, S.

Coletti, F.

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol.in press.

Corbin, F.

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Cuche, E.

Dakoff, A.

de Jong, J.

Depeursinge, C.

Discetti, S.

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol.in press.

Dubois, F.

El Mallahi, A.

Endo, Y.

Foucaut, J. M.

Fowler, N. B.

Gass, J.

Godard, G.

Grier, D. G.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Herrmann, S. F.

S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic PIV (LiFH-PIV) for wind- tunnel applications : Off-site reconstruction of deep- volume real particle images,” Appl. Opt. 15, 1–9 (2004).

S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15(4), 613–621 (2004).
[Crossref]

Hinsch, K. D.

M. P. Arroyo and K. D. Hinsch, “Recent developments of PIV towards 3D measurements,” Top. Appl. Phys. 112, 127–154 (2008).
[Crossref]

S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15(4), 613–621 (2004).
[Crossref]

S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic PIV (LiFH-PIV) for wind- tunnel applications : Off-site reconstruction of deep- volume real particle images,” Appl. Opt. 15, 1–9 (2004).

Hong, J.

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28(4), 44009 (2017).
[Crossref]

M. Toloui and J. Hong, “High fidelity digital inline holographic method for 3D flow measurements,” Opt. Express 23(21), 27159–27173 (2015).
[Crossref] [PubMed]

Horisaki, R.

Ito, T.

Kakue, T.

Katz, J.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 24004 (2013).
[Crossref]

J. Katz and J. Sheng, “Applications of Holography in Fluid Mechanics and Particle Dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

Kim, M. K.

Kim, S.

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

Kowarschik, R.

Lebrun, D.

Lecordier, B.

Lee, M.

Lee, S. J.

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

Lim, S.

Malek, M.

Malkiel, E.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

Mallery, K.

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28(4), 44009 (2017).
[Crossref]

Marks, D. L.

Meng, H.

Minetti, C.

Ozcan, A.

Pan, G.

Petruck, P.

Riesenberg, R.

Sheng, J.

J. Katz and J. Sheng, “Applications of Holography in Fluid Mechanics and Particle Dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

Shimobaba, T.

Subedi, N. R.

Talapatra, S.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 24004 (2013).
[Crossref]

Teboulle, M.

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm,” Soc. Ind. Appl. Math. J. Imaging Sci. 2, 183–202 (2009).

Toloui, M.

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28(4), 44009 (2017).
[Crossref]

M. Toloui and J. Hong, “High fidelity digital inline holographic method for 3D flow measurements,” Opt. Express 23(21), 27159–27173 (2015).
[Crossref] [PubMed]

Walle, F.

Woodward, S.

Yaglidere, O.

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of Holography in Fluid Mechanics and Particle Dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Appl. Opt. (5)

Biomed. Opt. Express (1)

Exp. Fluids (2)

S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44(4), 623–631 (2008).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45(6), 1023–1035 (2008).
[Crossref]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Meas. Sci. Technol. (3)

M. Toloui, K. Mallery, and J. Hong, “Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements,” Meas. Sci. Technol. 28(4), 44009 (2017).
[Crossref]

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24(2), 24004 (2013).
[Crossref]

S. F. Herrmann and K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15(4), 613–621 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Soc. Ind. Appl. Math. J. Imaging Sci. (1)

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm,” Soc. Ind. Appl. Math. J. Imaging Sci. 2, 183–202 (2009).

Top. Appl. Phys. (1)

M. P. Arroyo and K. D. Hinsch, “Recent developments of PIV towards 3D measurements,” Top. Appl. Phys. 112, 127–154 (2008).
[Crossref]

Other (4)

S. Discetti and F. Coletti, “Volumetric velocimetry for fluid flows,” Meas. Sci. Technol.in press.

E. Hecht, “Optics 4th edition,” Opt. 4th Ed. by Eugene Hecht Read. MA AddisonWesley Publ. Co. 2001 1, 122 (2001).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography: With MATLAB (Cambridge University Press, 2014).

Supplementary Material (2)

NameDescription
» Visualization 1       3D reconstructed slices for enhanced hologram in Fig. 2(d)
» Visualization 2       3D Trajectory of particles over 300 time steps corresponding to the tracks in Fig. 2(e)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic for Digital Fresnel Reflection Holography (DRFH) including a laser, beam splitter, and a camera with an objective lens imaging the sampling volume through an imaging window. (b) Schematic for the hologram formation in DRFH, where light reflected from the inner wall interferes with the backscattered wave, as shown in the inset.
Fig. 2
Fig. 2 (a) DFRH setup consisting of a laser, a beam splitter, an objective lens and a camera. (b) Raw hologram. (c) Fourier Spectrum of the hologram with arrows indicating peaks corresponding to the background interference pattern and (d) the corresponding enhanced Hologram after Fourier domain filtering and time-average subtraction (contrast of image has been stretched through histogram equalization for illustration). (e) 3D rendering of trajectories (colored by tracks) reconstructed from a sequence of 300 time steps.
Fig. 3
Fig. 3 (a) Calibration image of particles in the x-y and y-z planes with insets of three specific particles comparing the scanned intensity on the top row with the reconstructed intensities on the bottom. (b) Longitudinal intensity profiles for the three selected particles comparing the scanned results with the DFRH reconstructions.
Fig. 4
Fig. 4 (a) Experimental setup for near-wall flow measurement in a small-scale channel with an inset highlighting the test section and the direction of flow. (b) Ensemble 3D trajectories (colored by track) of particles over a sequence of 4000 holograms obtained from the experiment setup. (c) The corresponding ensemble-averaged 3D vector field superimposed with contours of streamwise velocity.
Fig. 5
Fig. 5 (a) The variation of extracted particle concentration, the extraction efficiency and (b) the effective spatial resolution as a function of shadow density. Error bars indicate standard deviation over 300 samples.
Fig. 6
Fig. 6 (a) Coherence profiles for the green and red diode lasers. Sampling domain illustrated by intensity projection in the y-z plane for (b) the green and (c) the red diode lasers over a sequence of holograms. Note that the zero visibility is manually prescribed for cases where no clear fringes are visible and calculation of contrast is ambiguous i.e., for a Gaussian beam profile.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I DIH = | R+O | 2 = | exp{ jkz }+δ*h( x,y,z ) | 2 = A+2Re{ jk 2πz exp{ jk 2z ( x 2 + y 2 ) }}
I DFRH = | R+O | 2 = | exp{ jk z 1 }+δ*h( x,y, z 2 ) | 2 = A+2Re{ jk 2π z 2 exp{ jk 2 z 2 ( x 2 + y 2 )+jk( z 1 z 2 ) }}

Metrics