Abstract

Refractive index sensors based on the interrogation of guided Bloch surface wave resonance (GBR) in the azimuthal angle domain are studied both theoretically and numerically. The azimuthal sensitivity of the sensors is shown to be inversely proportional to the sines of both the azimuthal angle and the polar angle of the detecting electromagnetic signals. Extremely large azimuthal sensitivity is then achieved when the GBR sensor is designed to work near a small azimuthal angle and the polar angle is also fixed to a small one (For the azimuthal angle domain near φ = 5° and a fixed polar angle of θ = 5°, the azimuthal sensitivity gets larger than 5000 degrees per refractive index unit (Deg/RIU)).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Guided Bloch surface wave resonance for biosensor designs

Xiu-Bao Kang, Lan-Jun Liu, Hai Lu, Hai-Dong Li, and Zhi-Guo Wang
J. Opt. Soc. Am. A 33(5) 997-1003 (2016)

Refractive index sensor based on graphene-coated photonic surface-wave resonance

Qianru Yang, Linling Qin, Guoyang Cao, Cheng Zhang, and Xiaofeng Li
Opt. Lett. 43(4) 639-642 (2018)

A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals

Alberto Sinibaldi, Riccardo Rizzo, Giovanni Figliozzi, Emiliano Descrovi, Norbert Danz, Peter Munzert, Aleksei Anopchenko, and Francesco Michelotti
Opt. Express 21(20) 23331-23344 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Heidelberg, 1988).
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
    [Crossref] [PubMed]
  3. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  4. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing application via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007).
    [Crossref]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
    [Crossref]
  7. A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
    [Crossref] [PubMed]
  8. X.-B. Kang, L.-J. Liu, H. Lu, H.-D. Li, and Z.-G. Wang, “Guided Bloch surface wave resonance for biosensor designs,” J. Opt. Soc. Am. A 33(5), 997–1003 (2016).
    [Crossref] [PubMed]
  9. D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
    [Crossref]
  10. A. Sinibaldi, R. Rizzo, G. Figliozzi, E. Descrovi, N. Danz, P. Munzert, A. Anopchenko, and F. Michelotti, “A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals,” Opt. Express 21(20), 23331–23344 (2013).
    [Crossref] [PubMed]
  11. R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
    [Crossref] [PubMed]
  12. A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
    [Crossref]
  13. X.-B. Kang, L.-W. Wen, and Z.-G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
    [Crossref]
  14. W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett. 35(6), 865–867 (2010).
    [Crossref] [PubMed]
  15. G. D’Aguanno, D. de Ceglia, N. Mattiucci, and M. J. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36(11), 1984–1986 (2011).
    [Crossref] [PubMed]
  16. G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
    [Crossref] [PubMed]
  17. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [Crossref] [PubMed]
  18. K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
    [Crossref] [PubMed]
  19. F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
    [Crossref] [PubMed]
  20. Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators B Chem. 255(2), 1711–1715 (2018).
    [Crossref]
  21. V. Koju and W. M. Robertson, “Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation,” Sci. Rep. 7(1), 3233 (2017).
    [Crossref] [PubMed]
  22. E. Tóth, A. Szalai, A. Somogyi, B. Bánhelyi, E. Csapó, I. Dékány, T. Csendes, and M. Csete, “Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance,” Opt. Mater. Express 7(9), 3181–3203 (2017).
    [Crossref]
  23. J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
    [Crossref]
  24. X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009).
    [Crossref]
  25. J. R. DeVore, “Refractive indices of Rutile and Sphalerite,” J. Opt. Soc. Am. 41(6), 416 (1951).
    [Crossref]
  26. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205 (1965).
    [Crossref]
  28. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  29. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]

2018 (1)

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators B Chem. 255(2), 1711–1715 (2018).
[Crossref]

2017 (6)

V. Koju and W. M. Robertson, “Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation,” Sci. Rep. 7(1), 3233 (2017).
[Crossref] [PubMed]

E. Tóth, A. Szalai, A. Somogyi, B. Bánhelyi, E. Csapó, I. Dékány, T. Csendes, and M. Csete, “Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance,” Opt. Mater. Express 7(9), 3181–3203 (2017).
[Crossref]

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

X.-B. Kang, L.-W. Wen, and Z.-G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (1)

2014 (2)

2013 (2)

2011 (1)

2010 (3)

W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett. 35(6), 865–867 (2010).
[Crossref] [PubMed]

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2009 (2)

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (1)

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing application via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007).
[Crossref]

1995 (1)

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

1981 (1)

1965 (1)

1951 (1)

Amra, C.

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Anopchenko, A.

Aurelio, D.

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

Bánhelyi, B.

Barolo, C.

Bloemer, M. J.

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Chang, C.-C.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Chen, H.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009).
[Crossref]

Csapó, E.

Csendes, T.

Csete, M.

D’Aguanno, G.

Danz, N.

de Ceglia, D.

Dékány, I.

Descrovi, E.

DeVore, J. R.

Du, G.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Fieramosca, A.

Figliozzi, G.

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Gaylord, T. K.

Grann, E. B.

Guo, H.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Han, S.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Haraguchi, M.

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators B Chem. 255(2), 1711–1715 (2018).
[Crossref]

Hsu, H.-Y.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Jin, C.

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Kang, H. K.

Kang, X.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009).
[Crossref]

Kang, X.-B.

X.-B. Kang, L.-W. Wen, and Z.-G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

X.-B. Kang, L.-J. Liu, H. Lu, H.-D. Li, and Z.-G. Wang, “Guided Bloch surface wave resonance for biosensor designs,” J. Opt. Soc. Am. A 33(5), 997–1003 (2016).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Koju, V.

V. Koju and W. M. Robertson, “Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation,” Sci. Rep. 7(1), 3233 (2017).
[Crossref] [PubMed]

Lai, Z.

Lee, K. H.

Lee, K.-L.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Lereu, A. L.

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

Li, G.

Li, H.-D.

Li, Y.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Liscidini, M.

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
[Crossref]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing application via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007).
[Crossref]

Liu, L.-J.

Liu, W.

Liu, Y.

Lu, H.

Luo, S.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Magistris, C.

Maillart, E.

Malitson, I. H.

Mattiucci, N.

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Michelotti, F.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Misawa, H.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Moharam, M. G.

Munzert, P.

Naoi, Y.

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators B Chem. 255(2), 1711–1715 (2018).
[Crossref]

Pan, M.-Y.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Pang, Z.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Passian, A.

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

Pommet, D. A.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Rizzo, R.

Robertson, W. M.

V. Koju and W. M. Robertson, “Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation,” Sci. Rep. 7(1), 3233 (2017).
[Crossref] [PubMed]

Romanato, F.

Ruffato, G.

Ryckman, J. D.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shen, Y.

Shi, X.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Sinibaldi, A.

Sipe, J. E.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
[Crossref]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing application via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007).
[Crossref]

Somogyi, A.

Song, S.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Szalai, A.

Takashima, Y.

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators B Chem. 255(2), 1711–1715 (2018).
[Crossref]

Tan, W.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009).
[Crossref]

Tóth, E.

Ueno, K.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Wächter, C.

Wang, X.

Wang, Z.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009).
[Crossref]

Wang, Z.-G.

X.-B. Kang, L.-W. Wen, and Z.-G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

X.-B. Kang, L.-J. Liu, H. Lu, H.-D. Li, and Z.-G. Wang, “Guided Bloch surface wave resonance for biosensor designs,” J. Opt. Soc. Am. A 33(5), 997–1003 (2016).
[Crossref] [PubMed]

Wei, P.-K.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Weiss, S. M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
[Crossref]

Wen, L.-W.

X.-B. Kang, L.-W. Wen, and Z.-G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

Wong, C. C.

Xiao, G.

Yang, T.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

You, M.-L.

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Zerrad, M.

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

Zhao, J.

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zuo, D.

Appl. Phys. Lett. (4)

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing application via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

A. L. Lereu, M. Zerrad, A. Passian, and C. Amra, “Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors,” Appl. Phys. Lett. 111(1), 011107 (2017).
[Crossref]

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Porous silicon structures for low-cost diffraction-based biosensing,” Appl. Phys. Lett. 96(17), 171103 (2010).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

X.-B. Kang, L.-W. Wen, and Z.-G. Wang, “Design of guided Bloch surface wave resonance bio-sensors with high sensitivity,” Opt. Commun. 383, 531–536 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. A (1)

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009).
[Crossref]

Phys. Rev. B (1)

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96(4), 045308 (2017).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (2)

V. Koju and W. M. Robertson, “Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation,” Sci. Rep. 7(1), 3233 (2017).
[Crossref] [PubMed]

K.-L. Lee, H.-Y. Hsu, M.-L. You, C.-C. Chang, M.-Y. Pan, X. Shi, K. Ueno, H. Misawa, and P.-K. Wei, “Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures,” Sci. Rep. 7, 44104 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Y. Takashima, M. Haraguchi, and Y. Naoi, “High-sensitivity refractive index sensor with normal incident geometry using a subwavelength grating operating near the ultraviolet wavelength,” Sens. Actuators B Chem. 255(2), 1711–1715 (2018).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Heidelberg, 1988).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The schematic of the grating-coupled BSW resonance sensor under azimuthal illuminations.
Fig. 2
Fig. 2 (a) The transmission of a GBR sensor versus the azimuthal and the polar angles. The structure is designed to excite GBR by illuminations near θ = 5° and φ = 5°. (b) The electric field of the BSW mode and the refractive index distribution inside the sensing configurations. The inset is the transmission in the azimuthal angle domain with the polar angle fixed at θ = 5°.
Fig. 3
Fig. 3 The shift of the GBR with the changing of the refractive index of the bio-solution. The sensors in the four cases are designed for: (a) θ = 5° and φ≈5°; (b) θ = 10° and φ≈5°; (c) θ = 5° and φ≈10°; (d) θ = 10° and φ≈10°.
Fig. 4
Fig. 4 The theoretically predicted (downward triangles linked with solid lines) and the numerically simulated (upward triangles linked with dashed lines) azimuthal sensitivities for GBR sensors designed to work around the azimuthal angle of 5°, 10°, 15°, 25°, 35°, 45°, respectively. In the subplots (a) and (b), the polar angles are respectively fixed at θ = 5° and 10°.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

[ E // H // ]=expi( k 0 ( k x x+ k y y )ωt )[ E( z l ) H( z l ) ].
k b = k x 2 + k y 2 >n .
k z b =i k b 2 n 2 .
  k z b =( H E )/ ε 0 / μ 0 .
k z b = ξ B .
k b = n 2 + | k z b | 2 .
k b = sin 2 θ sin 2 φ+ (sinθcosφ+ mλ Λ ) 2 .
k z b =i sin 2 θ2sinθcosφ λ Λ + ( λ Λ ) 2 n 2 .
Δ k z b =   k z b n Δn+   k z b φ Δφ ,
k z b n = n k z b
k z b φ = λsinθsinφ Λ k z b .
Δ k z b = k z b n Δn+ k z b φ Δφ=0 .
S= k z b n / k z b φ = nΛ λsinθsinφ .

Metrics