Abstract

We report stimulated emission in the 2.8–3.5 μm wavelength range from HgTe/CdHgTe quantum well (QW) heterostructures at temperatures available with thermoelectric cooling. The structures were designed to suppress the Auger recombination by implementing narrow (1.5 – 2 nm wide) QWs. We conclude that Peltier cooled operation is feasible in lasers based on such structures, making them of interest for spectroscopy applications in the atmospheric transparency window from 3 to 5 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade lasers: 20 years of challenges

Miriam Serena Vitiello, Giacomo Scalari, Benjamin Williams, and Paolo De Natale
Opt. Express 23(4) 5167-5182 (2015)

Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs

Yan Zhang, Yongqiang Ning, Lisen Zhang, Jinsheng Zhang, Jianwei Zhang, Zhenfu Wang, Jian Zhang, Yugang Zeng, and Lijun Wang
Opt. Express 19(13) 12569-12581 (2011)

Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode

G. Sun, R. A. Soref, and H. H. Cheng
Opt. Express 18(19) 19957-19965 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), pp. 458–529.
  2. F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
    [Crossref] [PubMed]
  3. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528–A535 (2016).
    [Crossref] [PubMed]
  4. R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
    [Crossref] [PubMed]
  5. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref] [PubMed]
  6. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref] [PubMed]
  7. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  8. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  9. A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm,” Opt. Express 24(16), 18799–18806 (2016).
    [Crossref] [PubMed]
  10. A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
    [Crossref]
  11. A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
    [Crossref]
  12. J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
    [Crossref]
  13. C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
    [Crossref]
  14. I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998).
    [Crossref] [PubMed]
  15. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
    [Crossref] [PubMed]
  16. N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
    [Crossref]
  17. M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
    [Crossref]
  18. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
    [Crossref]
  19. J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
    [Crossref]
  20. S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
    [Crossref]
  21. A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
    [Crossref]
  22. S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
    [Crossref]
  23. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
    [Crossref]
  24. K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
    [Crossref]
  25. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier Science Publishers, North-Holland, 1991).
  26. A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
    [Crossref]
  27. I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
    [Crossref]

2017 (5)

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
[Crossref] [PubMed]

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

2014 (2)

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

2012 (2)

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2011 (3)

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

2006 (3)

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

1999 (2)

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

1998 (3)

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998).
[Crossref] [PubMed]

Aleshkin, V. Y.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Andronov, A. A.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Antonov, A. V.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Bahriz, M.

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Baranov, A. N.

Bazhenov, N. L.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Bernevig, B. A.

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Bleuse, J.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Bonnet-Gamard, J.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Bovkun, L. S.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Brunev, D. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Chu, J.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

De Natale, P.

Dell, J. M.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Dong, L.

Dubinov, A. A.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

Dvoretskii, S. A.

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Dvoretsky, S. A.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Fadeev, M. A.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

Faraone, L.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Fisher, T. A.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Gavrilenko, V. I.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

Ghorbani, R.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Griffin, R. J.

Guo, S.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Hadji, E.

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Heydari, D.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hughes, T. L.

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Ikonnikov, A. V.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Ishida, A.

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

Ivanov-Omskii, V. I.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Jean-Louis, P.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Kadykov, A. M.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

Krasilnikova, L. V.

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Krishtopenko, S. S.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Kudryavtsev, K. E.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

Li, C.

Li, Z.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Lu, Q. Y.

Lu, W.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Lü, X.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Magnea, N.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Marchishin, I. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Maremyanin, K. V.

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

Meyer, J.

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Mikhailov, N. N.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Morozov, S. V.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Mula, G.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Mynbaev, K. D.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Nakashima, S.

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

Nozdrin, Y. N.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Okomel’kov, A. V.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Orlita, M.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Pautrat, J. L.

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Polkovnikov, A. S.

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

Potemski, M.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Predein, A. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Razeghi, M.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Remesnik, V. G.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Roux, C.

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Rumyantsev, V. V.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Rykhlitski, S. V.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Sabinina, I. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Sampaolo, A.

Sanchez, N. P.

Scalari, G.

Schmidt, F. M.

Shao, J.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Shvets, V. A.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Sidorov, G. Y.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Sidorov, Y. G.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Sidorov, Yu. G.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Slivken, S.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Smirnov, R. N.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Song, F.

Sorochkin, A. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Spesivtsev, E. V.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Teissier, R.

Tittel, F. K.

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Varavin, V. S.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Vasilyev, V. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Vitiello, M. S.

Vurgaftman, I.

I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998).
[Crossref] [PubMed]

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Wang, Y.

Williams, B.

Wu, H.

Yakushev, M. V.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Yan, W.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Ye, W.

Yu, Y.

Yue, F.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Zegrya, G. G.

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

Zhang, S. C.

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Zheng, C.

Zholudev, M. S.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

Zhou, W.

Appl. Phys. Lett. (7)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Int. J. Nanotechnol. (1)

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

J. Cryst. Growth (1)

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

J. Lumin. (1)

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (7)

Phys. Rev. B (1)

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Science (1)

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Semiconductors (3)

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Other (2)

V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier Science Publishers, North-Holland, 1991).

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), pp. 458–529.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Refractive index distribution throughout the structure and calculated TE mode localization for λ = 3.7 µm in structure #1.
Fig. 2
Fig. 2 SE and PL spectra at different temperatures for (a) structure #1 (pumping wavelength λp = 1.6 μm) at fixed pumping intensity Ip = 250 kW/cm2; (b) structure #2 (pumping wavelength λp = 1.5 μm). Pumping intensity for 100–200 K range was chosen to keep SE peak amplitude the same, spectra for higher temperatures (256–300K) are given at the highest pumping intensity Ip = 250 kW/cm2 (c) temperature dependence of SE peak position (blue and red symbols correspond to measurement in closed-cycle cryostat and in Peltier cooler, respectively; filled symbols correspond to SE peak traced in PL spectra above “critical” temperature for structure #2).
Fig. 3
Fig. 3 Integrated intensity of light emission from the structures under study as a function of pumping intensity at various temperatures: (a) structure #1; (c) structure #2. Inset (b) shows the logarithm of threshold pumping intensity versus temperature.
Fig. 4
Fig. 4 Calculated band spectrum for (a) 2 nm thick HgTe/Cd0.65Hg0.35Te QW (b) 10 nm thick Hg0.66Cd0.34Te/Cd0.58Hg0.42Te QW at T = 160K. Grey areas indicate barrier continuum states.

Metrics