Abstract

We experimentally demonstrate all-optical amplitude regeneration of 4-level pulse amplitude modulated signals (PAM4) based on a single nonlinear optical loop mirror (NOLM). Four power-plateau regions are achieved using return-to-zero (RZ) pulses of narrow pulse-width, enabling large nonlinear phase shifts within the highly nonlinear fiber (HNLF). We quantify noise suppression characteristics at each amplitude level and obtain an overall EVM improvement of 0.92dB by optimizing input power and distortion strength. A theoretical analysis has been also carried out matching the experimental results and revealing the design characteristics of the regenerator’s nonlinear transfer function.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
QPSK 3R regenerator using a phase sensitive amplifier

A. Perentos, S. Fabbri, M. Sorokina, I. D. Phillips, S. K. Turitsyn, A. D. Ellis, and S. Sygletos
Opt. Express 24(15) 16649-16658 (2016)

Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators

Joe T. Mok, Justin L. Blows, and Benjamin J. Eggleton
Opt. Express 12(19) 4411-4422 (2004)

All-optical phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Thomas Richter, Colja Schubert, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(22) 27077-27085 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5, 3861 (2014).
    [Crossref] [PubMed]
  2. J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
    [Crossref]
  3. K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
    [Crossref]
  4. A. Perentos, S. Fabbri, M. Sorokina, I. D. Phillips, S. K. Turitsyn, A. D. Ellis, and S. Sygletos, “QPSK 3R regenerator using a phase sensitive amplifier,” Opt. Express 24(15), 16649–16658 (2016).
    [Crossref] [PubMed]
  5. T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
    [Crossref] [PubMed]
  6. M. Sorokina, “Design of multilevel amplitude regenerative system,” Opt. Lett. 39(8), 2499–2502 (2014).
    [Crossref] [PubMed]
  7. T. Roethlingshoefer, G. Onishchukov, B. Schmauss, and G. Leuchs, “Cascaded phase-preserving multilevel amplitude regeneration,” Opt. Express 22(26), 31729–31734 (2014).
    [Crossref] [PubMed]
  8. F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks, We.D5.3 (2017).
    [Crossref]
  9. L. Grüner-Nielsen, S. Herstrøm, S. Dasgupta, D. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Pálsdóttir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in 2011 IEEE Photonics Society Winter Topical Meeting, TuF2.4 (2015).
  10. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [Crossref]
  11. S. J. Fabbri, S. Sygletos, A. Perentos, E. Pincemin, K. Sugden, and A. D. Ellis, “Experimental implementation of an all-optical interferometric drop, add, and extract multiplexer for superchannels,” J. Lightwave Technol. 33(7), 1351–1357 (2015).
    [Crossref]
  12. K. Croussore, C. Kim, and G. Li, “All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Proc. SPIE 5814, 166–175 (2005).
    [Crossref]
  13. Tektronix, “PAM4 signaling in high speed serial technology: test, analysis, and debug,” Application Note.
  14. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, and J. R. Simpson, “Soliton switching in a fiber nonlinear loop mirror,” Opt. Lett. 14(15), 811–813 (1989).
    [Crossref] [PubMed]
  15. F. Wen, M. Sorokina, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “Phase-preserving multilevel amplitude regeneration in conjugate nonlinear-optical loop mirror pair,” in Conference on Lasers and Electro-Optics, SM4K.6 (2018).

2016 (1)

2015 (1)

2014 (4)

2011 (1)

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

2007 (1)

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

2005 (1)

K. Croussore, C. Kim, and G. Li, “All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Proc. SPIE 5814, 166–175 (2005).
[Crossref]

2001 (1)

1989 (1)

Andrekson, P. A.

Bogris, A.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Croussore, K.

K. Croussore, C. Kim, and G. Li, “All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Proc. SPIE 5814, 166–175 (2005).
[Crossref]

Cvecek, K.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Dross, F.

Ellis, A. D.

Fabbri, S.

Fabbri, S. J.

Grüner-Nielsen, L.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Hansryd, J.

Islam, M. N.

Kakande, J.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Kim, C.

K. Croussore, C. Kim, and G. Li, “All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Proc. SPIE 5814, 166–175 (2005).
[Crossref]

Knudsen, S. N.

Leuchs, G.

Li, G.

K. Croussore, C. Kim, and G. Li, “All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Proc. SPIE 5814, 166–175 (2005).
[Crossref]

Ludwig, R.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Onishchukov, G.

Parmigiani, F.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Perentos, A.

Petropoulos, P.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Phelan, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Phillips, I. D.

Pincemin, E.

Pleibel, W.

Richardson, D. J.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Richter, T.

Roethlingshoefer, T.

Schmauss, B.

Schubert, C.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Simpson, J. R.

Slavík, R.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Sorokina, M.

Sorokina, M. A.

M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5, 3861 (2014).
[Crossref] [PubMed]

Sponsel, K.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Stephan, C.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Stolen, R. H.

Sugden, K.

Sunderman, E. R.

Sygletos, S.

Syvridis, D.

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Turitsyn, S. K.

Westlund, M.

IEEE Photonics Technol. Lett. (1)

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror,” IEEE Photonics Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

M. A. Sorokina and S. K. Turitsyn, “Regeneration limit of classical Shannon capacity,” Nat. Commun. 5, 3861 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics 5(12), 748–752 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

K. Croussore, C. Kim, and G. Li, “All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification,” Proc. SPIE 5814, 166–175 (2005).
[Crossref]

Other (4)

Tektronix, “PAM4 signaling in high speed serial technology: test, analysis, and debug,” Application Note.

F. Wen, M. Sorokina, C. P. Tsekrekos, Y. Geng, X. Zhou, B. Wu, K. Qiu, S. K. Turitsyn, and S. Sygletos, “Phase-preserving multilevel amplitude regeneration in conjugate nonlinear-optical loop mirror pair,” in Conference on Lasers and Electro-Optics, SM4K.6 (2018).

F. Wen, S. Sygletos, C. P. Tsekrekos, X. Zhou, Y. Geng, B. Wu, K. Qiu, and S. K. Turitsyn, “Multilevel power transfer function characterization of nonlinear optical loop mirror,” in 19th International Conference on Transparent Optical Networks, We.D5.3 (2017).
[Crossref]

L. Grüner-Nielsen, S. Herstrøm, S. Dasgupta, D. Richardson, D. Jakobsen, C. Lundström, P. A. Andrekson, M. E. V. Pedersen, and B. Pálsdóttir, “Silica-based highly nonlinear fibers with a high SBS threshold,” in 2011 IEEE Photonics Society Winter Topical Meeting, TuF2.4 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Setup of a NOLM subsystem, (b) typical PTF curves.
Fig. 2
Fig. 2 (a) Reflection and (b) transmission PTF absolute slope values of less than one, (c) RLM results of transmission signal.
Fig. 3
Fig. 3 Experimental setup of all-optical RZ-PAM4 regeneration in a single NOLM subsystem.
Fig. 4
Fig. 4 Eye diagrams of (a) electronic NRZ and (b) NRZ-PAM4 signals.
Fig. 5
Fig. 5 (a) PTF and its slope of the transmission response. The red arrows indicate four power plateau regions. (b) Corresponding amplitude noise transfer vs. input powers.
Fig. 6
Fig. 6 Noise suppression capability for (a) region A, (b) region B and (c) region C.
Fig. 7
Fig. 7 (a) Input power optimization, (b) EVM improvement for the NOLM regenerator, and power histograms before and after the regeneration, (c) BER simulation results of input and output of the NOLM, transmission with/without the NOLM.
Fig. 8
Fig. 8 Eye diagrams of (a) distorted and (b) regenerated RZ-PAM4 signals.

Tables (1)

Tables Icon

Table 1 Local maximum and minimum points

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ P out Ref =2 C P β( 1β )( 1+cos Φ β ) P in P out Tra = C P [ 12β( 1β )( 1+cos Φ β ) ] P in

Metrics