Abstract

We unveil a gas-lens effect in kW-class thin-disk lasers, which accounts in our experiments for 33% of the overall disk thermal lensing. By operating the laser in vacuum, the gas lens vanishes. This leads to a lower overall thermal lensing and hence to a significantly extended power range of optimal beam quality. In our high-power continuous-wave (cw) thin-disk laser, we obtain single-transverse-mode operation, i.e. M2 < 1.1, in a helium or vacuum environment over an output-power range from 300 W to 800 W, which is 70% broader than in an air environment. In order to predict the magnitude of the gas-lens effect in different thin-disk laser systems and gain a deeper understanding of the effect of the heated gas in front of the disk, we develop a new numerical model. It takes into account the heat transfer between the thin disk and the surrounding gas and calculates the lensing effect of the heated gas. Using this model, we accurately reproduce our experimental results and additionally predict, for the first time by means of a theoretical tool, the existence of the known gas-wedge effect due to gas convection. The gas-lens and gas-wedge effects are relevant to all high-power thin-disk systems, both oscillators and amplifiers, operating in cw as well as pulsed mode. Specifically, canceling the gas-lens effect becomes crucial for kW power scaling of thin-disk oscillators because of the larger mode area on the disk and the resulting higher sensitivity to the disk thermal lens.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power Yb:GGG thin-disk laser oscillator: first demonstration and power-scaling prospects

A. Diebold, Z. Jia, I. J. Graumann, Y. Yin, F. Emaury, C. J. Saraceno, X. Tao, and U. Keller
Opt. Express 25(2) 1452-1462 (2017)

275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment

Clara J. Saraceno, Florian Emaury, Oliver H. Heckl, Cyrill R. E. Baer, Martin Hoffmann, Cinia Schriber, Matthias Golling, Thomas Südmeyer, and Ursula Keller
Opt. Express 20(21) 23535-23541 (2012)

Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller
Opt. Express 25(19) 22519-22536 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  3. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
    [Crossref]
  4. M. N. Zervas and D. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  5. P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
    [Crossref]
  6. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  7. S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
  8. V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
  9. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
    [Crossref] [PubMed]
  10. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
    [Crossref] [PubMed]
  11. M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.
  12. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
    [Crossref] [PubMed]
  13. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
    [Crossref] [PubMed]
  14. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
    [Crossref] [PubMed]
  15. F. Emaury, A. Diebold, A. Klenner, C. J. Saraceno, S. Schilt, T. Südmeyer, and U. Keller, “Frequency comb offset dynamics of SESAM modelocked thin disk lasers,” Opt. Express 23(17), 21836–21856 (2015).
    [Crossref] [PubMed]
  16. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
    [Crossref] [PubMed]
  17. C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 1, 1100318 (2015).
  18. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4(10), 1962–1969 (1987).
    [Crossref]
  19. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
    [Crossref] [PubMed]
  20. B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
    [Crossref] [PubMed]
  21. B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
    [Crossref]
  22. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42(17), 3263–3266 (2017).
    [Crossref] [PubMed]
  23. J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  24. G. Zhu, X. Zhu, M. Wang, Y. Feng, and C. Zhu, “Analytical model of thermal effect and optical path difference in end-pumped Yb:YAG thin disk laser,” Appl. Opt. 53(29), 6756–6764 (2014).
    [Crossref] [PubMed]
  25. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
    [Crossref] [PubMed]
  26. K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass oscillator layout for high-energy mode-locked thin-disk lasers,” https://arxiv.org/abs/1603.00404 (2016).
  27. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [Crossref] [PubMed]
  28. K. Schuhmann, K. Kirch, F. Nez, R. Pohl, and A. Antognini, “Thin-disk laser scaling limit due to thermal lens induced misalignment instability,” Appl. Opt. 55(32), 9022–9032 (2016).
    [Crossref] [PubMed]
  29. C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
    [Crossref] [PubMed]
  30. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
    [Crossref]
  31. J. Shang, X. Zhu, and G. Zhu, “Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser,” Appl. Opt. 50(32), 6103–6120 (2011).
    [Crossref] [PubMed]
  32. J. Perchermeier and U. Wittrock, “Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser,” Opt. Lett. 38(14), 2422–2424 (2013).
    [Crossref] [PubMed]
  33. R. Penndorf, “Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region between 0.2 and 20.0 μ and Their Application to Atmospheric Optics,” J. Opt. Soc. Am. 47(2), 176–182 (1957).
    [Crossref]
  34. J. A. Stone and A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41(3), 189–197 (2004).
    [Crossref]
  35. E. R. Peck and B. N. Khanna, “Dispersion of Nitrogen,” J. Opt. Soc. Am. 56(8), 1059–1063 (1966).
    [Crossref]

2017 (3)

2016 (3)

2015 (5)

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
[Crossref] [PubMed]

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

F. Emaury, A. Diebold, A. Klenner, C. J. Saraceno, S. Schilt, T. Südmeyer, and U. Keller, “Frequency comb offset dynamics of SESAM modelocked thin disk lasers,” Opt. Express 23(17), 21836–21856 (2015).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 1, 1100318 (2015).

2014 (4)

2013 (2)

2012 (4)

2011 (1)

2010 (1)

B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
[Crossref]

2008 (2)

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
[Crossref] [PubMed]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

2004 (2)

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

J. A. Stone and A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41(3), 189–197 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2000 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1987 (1)

1966 (1)

1957 (1)

Abdou Ahmed, M.

Ackermann, M.

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

Ahmed, M. A.

Alismail, A.

Antognini, A.

Aus der Au, J.

Austerschulte, A.

B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
[Crossref]

Baer, C. R. E.

Balembois, F.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Barros, H. G.

Bauer, D.

Bessing, R.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Blazquez-Sanchez, D.

B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Brons, J.

Chenais, S.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Codemard, D. A.

M. N. Zervas and D. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Dekorsy, T.

Diebold, A.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 1, 1100318 (2015).

F. Emaury, A. Diebold, A. Klenner, C. J. Saraceno, S. Schilt, T. Südmeyer, and U. Keller, “Frequency comb offset dynamics of SESAM modelocked thin disk lasers,” Opt. Express 23(17), 21836–21856 (2015).
[Crossref] [PubMed]

Dietrich, T.

Druon, F.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Emaury, F.

Engqvist, A. G.

Erhard, S.

Esser, D.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Fattahi, H.

Feng, Y.

Georges, P.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Giesen, A.

Gingras, G.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Golling, M.

Gorjan, M.

Gottwald, T.

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

Graf, T.

Haefner, M.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Hashimoto, S.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
[Crossref] [PubMed]

Heckl, O. H.

Hofer, M.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Hoffmann, D.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Hoffmann, M.

Hövel, R.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Karszewski, M.

Kaumanns, M.

Keller, U.

F. Emaury, A. Diebold, A. Klenner, C. J. Saraceno, S. Schilt, T. Südmeyer, and U. Keller, “Frequency comb offset dynamics of SESAM modelocked thin disk lasers,” Opt. Express 23(17), 21836–21856 (2015).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 1, 1100318 (2015).

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
[Crossref] [PubMed]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
[Crossref] [PubMed]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
[Crossref] [PubMed]

Khanna, B. N.

Killi, A.

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
[Crossref] [PubMed]

J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
[Crossref] [PubMed]

B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
[Crossref]

Kirch, K.

Klenner, A.

Klingebiel, S.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Kränkel, C.

Krausz, F.

Kuhn, V.

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

Loescher, A.

Lohring, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Loosen, P.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Lucas-Leclin, G.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Luttmann, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Maas, D. J. H. C.

Magni, V.

Major, Z.

Marchese, S. V.

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
[Crossref] [PubMed]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Meissner, A.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Metzger, T.

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref] [PubMed]

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Michel, K.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Moser, M.

Negel, J.-P.

Nez, F.

Nubbemeyer, T.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Paschotta, R.

Peck, E. R.

Penndorf, R.

Perchermeier, J.

Pervak, V.

Piehler, S.

Pohl, R.

Poprawe, R.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Prinz, S.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Pronin, O.

Röcker, C.

Rumpel, M.

Russbueldt, P.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Ryba, T.

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

Saraceno, C. J.

Sartorius, T.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Sawodny, O.

Schad, S.-S.

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

Scharun, M.

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

Schilt, S.

Schriber, C.

Schuhmann, K.

Schultze, M.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Shang, J.

Spühler, G. J.

Stejskal, A.

J. A. Stone and A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41(3), 189–197 (2004).
[Crossref]

Stolzenburg, C.

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

Stone, J. A.

J. A. Stone and A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41(3), 189–197 (2004).
[Crossref]

Südmeyer, T.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 1, 1100318 (2015).

F. Emaury, A. Diebold, A. Klenner, C. J. Saraceno, S. Schilt, T. Südmeyer, and U. Keller, “Frequency comb offset dynamics of SESAM modelocked thin disk lasers,” Opt. Express 23(17), 21836–21856 (2015).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
[Crossref] [PubMed]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
[Crossref] [PubMed]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
[Crossref] [PubMed]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sutter, D.

Sutter, D. H.

Teisset, C. Y.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Traub, M.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Ueffing, M.

Voss, A.

Wandt, C.

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

Wang, M.

Weichelt, B.

B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
[Crossref]

Weitenberg, J.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Wester, R.

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wittmüss, P.

Wittrock, U.

Witzel, B.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Zawischa, I.

Zervas, M. N.

M. N. Zervas and D. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Zhu, C.

Zhu, G.

Zhu, X.

Appl. Opt. (3)

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. N. Zervas and D. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 3100117 (2015).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 1, 1100318 (2015).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers - reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Metrologia (1)

J. A. Stone and A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41(3), 189–197 (2004).
[Crossref]

Nat. Photonics (1)

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Express (7)

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
[Crossref] [PubMed]

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
[Crossref] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
[Crossref] [PubMed]

C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
[Crossref] [PubMed]

F. Emaury, A. Diebold, A. Klenner, C. J. Saraceno, S. Schilt, T. Südmeyer, and U. Keller, “Frequency comb offset dynamics of SESAM modelocked thin disk lasers,” Opt. Express 23(17), 21836–21856 (2015).
[Crossref] [PubMed]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008).
[Crossref] [PubMed]

Opt. Lett. (8)

T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42(17), 3263–3266 (2017).
[Crossref] [PubMed]

J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

J. Perchermeier and U. Wittrock, “Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser,” Opt. Lett. 38(14), 2422–2424 (2013).
[Crossref] [PubMed]

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
[Crossref] [PubMed]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
[Crossref] [PubMed]

Proc. SPIE (3)

B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010).
[Crossref]

S.-S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).

V. Kuhn, T. Gottwald, C. Stolzenburg, S.-S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).

Other (2)

M. Schultze, S. Klingebiel, C. Wandt, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, K. Michel, and T. Metzger, “500 W - 10 mJ - Picosecond Thin-Disk Regenerative Amplifier,” Europhoton Conference2016, SSL-5.4.

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass oscillator layout for high-energy mode-locked thin-disk lasers,” https://arxiv.org/abs/1603.00404 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the single-mode cw thin disk laser (TDL) cavity setup, including an output coupler (OC), a 2-m convex (CX) mirror, and the highly-reflective (HR) end mirror. The three cavity arms are labeled as a, b, and c, respectively. (b) Output-power slope for high-power single-mode operation. The power range of good beam quality (i.e. M2 < 1.1) is ~70% broader in vacuum as compared to 1-bar air.
Fig. 2
Fig. 2 (a) Disk thermal-lensing measurements in fluorescence mode, total disk thermal lens Δ F total , disk peak temperature change Δ T . Both methods, interferometer (Int.) and laser focus (Focus), stand in good agreement with each other. Measurements in vacuum yielded similar results as 1-bar He, and measurements in 1-bar N2 (not shown here) yielded similar results as 1-bar air. The disk-temperature increase is independent of the gas environment. (b) Disk thermal-lensing measurements in multimode (MM) operation, reaching 1.4 kW of output power [see Fig. 2(c)]. Due to the low sensitivity of the highly multimode test cavity to the cavity element curvatures, the output power was independent of the gas environment within the uncertainty of the used power meter (~5%). Note also that a slightly wider range of pump intensities (up to 5.5 kW/cm2) is used for the multimode data.
Fig. 3
Fig. 3 (a) Sample output beam profile for different values of M2. (b) Calculated stability zone of the single-mode cavity (black solid line) in comparison to the measured mode quality (M2) versus the total disk diopter change ( Δ F total ) for both operation in 1-bar air and vacuum. The overlaid numbers indicate the corresponding output power, see also Fig. 1(b). In this particular cavity setup, an ideal overlap of pump spot and laser spot, leading to an M2 < 1.1, is achieved for disk thermal lensing between −5*10−3 1/m and −11*10−3 1/m.
Fig. 4
Fig. 4 (a) Schematic of the model showing, left to right, the diamond heatsink, the disk with the super-Gaussian temperature profile on it, and the gas in front of it. (b) Simulated and measured gas-lens and vertical-gas-wedge effect for a disk’s peak temperature increase ΔT = 57 °C. We fitted the gas-lens-simulation data with the function ΔFgas,sim = α (dspot)β finding β = −1.4. The gas-lens effect increases for smaller pump-spot diameter while the gas wedge (black squares) only slightly depends on it.
Fig. 5
Fig. 5 Simulation of the gas refractive index (n(x,y,z)-1) profiles for (a) 1-bar air and (b) 1-bar He. The disk is situated at z = 0 mm with a peak temperature of 81 °C (ΔT = 57 °C). Both the gas-lens and gas-wedge effects are clearly visible. Due to the higher thermal conductivity of He, see Table 2, the heat from the disk extends further into the gas. Nonetheless, thanks to the order of magnitude lower n-1, the thermo-optic effects for He are significantly less pronounced as compared to air, as in our experimental data summarized in Table 1.

Tables (2)

Tables Icon

Table 1 Slope of disk thermal lensing for different gas environments. Total diopter change ( Δ F t o t a l , see also Fig. 2) in both fluorescence and multimode operation, diopter change due to the gas-lens effect ( Δ F g a s , e x p =   Δ F t o t a l Δ F   v a c u u m ) inferred from the fluorescence measurement, and simulated diopter change due to the gas-lens effect ( Δ F g a s ,   s i m , see section 4), all per disk peak temperature increase ( Δ T ). The fit uncertainty of ( Δ F t o t a l / Δ T ) is ~3%. The resulting uncertainty of Δ F g a s , e x p / Δ T is presented in the table.

Tables Icon

Table 2 Thermal and optical properties of vacuum, helium, nitrogen, and air, at 25°C and 1030 nm [33–35].

Metrics