Abstract

This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coded aperture structured illumination digital holographic microscopy for superresolution imaging

Xin-Ji Lai, Han-Yen Tu, Yu-Chih Lin, and Chau-Jern Cheng
Opt. Lett. 43(5) 1143-1146 (2018)

Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope

Tomáš Slabý, Pavel Kolman, Zbyněk Dostál, Martin Antoš, Martin Lošťák, and Radim Chmelík
Opt. Express 21(12) 14747-14762 (2013)

Imaging in digital holographic microscopy

Shan Shan Kou and Colin J. R. Sheppard
Opt. Express 15(21) 13640-13648 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  3. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography [invited],” Appl. Opt. 53(27), G44–G63 (2014).
    [Crossref] [PubMed]
  4. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
    [Crossref] [PubMed]
  5. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  6. X.-J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
    [Crossref] [PubMed]
  7. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [Crossref] [PubMed]
  8. M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
    [Crossref]
  9. M. Bashkansky, R. L. Lucke, E. Funk, L. J. Rickard, and J. Reintjes, “Two-dimensional synthetic aperture imaging in the optical domain,” Opt. Lett. 27(22), 1983–1985 (2002).
    [Crossref] [PubMed]
  10. A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11(19), 2446–2451 (2003).
    [Crossref] [PubMed]
  11. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36(2), 148–150 (2011).
    [Crossref] [PubMed]
  12. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  13. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
    [Crossref]
  14. W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
    [Crossref]
  15. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32(13), 2426–2430 (1993).
    [Crossref] [PubMed]
  16. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
    [Crossref] [PubMed]
  17. C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
    [Crossref]
  18. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
    [Crossref] [PubMed]
  19. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
    [Crossref] [PubMed]
  20. X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
    [Crossref] [PubMed]
  21. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33(20), 2356–2358 (2008).
    [Crossref] [PubMed]
  22. M. Paturzo, P. Memmolo, A. Tulino, A. Finizio, and P. Ferraro, “Investigation of angular multiplexing and de-multiplexing of digital holograms recorded in microscope configuration,” Opt. Express 17(11), 8709–8718 (2009).
    [Crossref] [PubMed]
  23. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004).
    [Crossref] [PubMed]
  24. A. Hussain, J. L. Martínez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator,” Opt. Express 21(8), 9615–9623 (2013).
    [Crossref] [PubMed]
  25. S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express 21(11), 12987–12995 (2013).
    [Crossref] [PubMed]
  26. X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
    [Crossref]
  27. Y. C. Lin, C. J. Cheng, and L. C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events,” Opt. Lett. 42(11), 2082–2085 (2017).
    [Crossref] [PubMed]
  28. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
  29. J. W. Goodman, Statistical Optics (Wiley, 2000).
  30. U. Schnars and W. P. O. Jüptner, Digital Holography, (Springer US, 2005).
  31. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
    [Crossref] [PubMed]
  32. J. P. Wilde, J. W. Goodman, Y. C. Eldar, and Y. Takashima, “Coherent superresolution imaging via grating-based illumination,” Appl. Opt. 56(1), A79–A88 (2017).
    [Crossref]
  33. Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
    [Crossref]
  34. S. B. Mehta and R. Oldenbourg, “Image simulation for biological microscopy: microlith,” Biomed. Opt. Express 5(6), 1822–1838 (2014).
    [Crossref] [PubMed]
  35. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
    [Crossref]
  36. J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
    [Crossref]
  37. Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
    [Crossref]
  38. B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
    [Crossref] [PubMed]

2018 (2)

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

X.-J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (2)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[Crossref] [PubMed]

2015 (4)

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (6)

A. Hussain, J. L. Martínez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator,” Opt. Express 21(8), 9615–9623 (2013).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express 21(11), 12987–12995 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
[Crossref]

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

2011 (1)

2009 (2)

2008 (1)

2006 (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (4)

M. Bashkansky, R. L. Lucke, E. Funk, L. J. Rickard, and J. Reintjes, “Two-dimensional synthetic aperture imaging in the optical domain,” Opt. Lett. 27(22), 1983–1985 (2002).
[Crossref] [PubMed]

J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
[Crossref] [PubMed]

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[Crossref] [PubMed]

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

1999 (2)

1995 (1)

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

1993 (1)

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Bashkansky, M.

Bevilacqua, F.

Bo, F.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Campos, J.

Cheng, C. J.

X.-J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

Y. C. Lin, C. J. Cheng, and L. C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events,” Opt. Lett. 42(11), 2082–2085 (2017).
[Crossref] [PubMed]

X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
[Crossref] [PubMed]

Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
[Crossref]

Cheng, C.-J.

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Cuche, E.

Dasari, R. R.

de Bruijn, H. E.

Depeursinge, C.

Eldar, Y. C.

Fang-Yen, C.

Faridian, A.

Feld, M. S.

Ferraro, P.

Finizio, A.

Funk, E.

Furutaku, S.

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

Gao, P.

Goodman, J. W.

Greenbaum, A.

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Greve, J.

Gui, J.

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Hasegawa, S.

Hayasaki, Y.

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Hirao, K.

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Hussain, A.

Ishikawa, T.

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

Javidi, B.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Karaman, M.

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

Kashter, Y.

Kelner, R.

Kim, M.

Kooyman, R. P. H.

Körner, K.

Kühn, J.

Kuroiwa, Y.

Lai, X. J.

X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
[Crossref] [PubMed]

Lai, X.-J.

X.-J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[Crossref] [PubMed]

Lee, Y. L.

Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
[Crossref]

Li, C.

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

Li, J.

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

Li, P.-C.

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

Lin, L. C.

Lin, Y. C.

X.-J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

Y. C. Lin, C. J. Cheng, and L. C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events,” Opt. Lett. 42(11), 2082–2085 (2017).
[Crossref] [PubMed]

X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
[Crossref] [PubMed]

Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
[Crossref]

Lin, Y.-C.

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

Liu, C.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

Liu, H.

Liu, Z. G.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

Lizana, A.

Lou, Y.

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

Lucke, R. L.

Luo, W.

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Marquet, P.

Martínez, J. L.

Massig, J. H.

Mehta, S. B.

Memmolo, P.

Moon, I.

Naik, D.

Narita, Y.

O’Donnell, M.

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

Oldenbourg, R.

Osten, W.

Ozcan, A.

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Paturzo, M.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[Crossref] [PubMed]

Pedrini, G.

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Rappaz, B.

Reintjes, J.

Rickard, L. J.

Rosen, J.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Seelamantula, C. S.

Singh, A. K.

Stern, A.

Sung, Y.

Suzuki, A.

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

Takahashi, Y.

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

Takashima, Y.

Takeda, M.

Takeshima, N.

Tanaka, S.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Tu, H. Y.

X.-J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
[Crossref] [PubMed]

Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
[Crossref]

Tu, H.-Y.

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

Tulino, A.

Turcatti, G.

Unser, M.

Vijayakumar, A.

Vinoth, B.

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

Waller, L.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Wang, Y.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

Wilde, J. P.

Wilke, M.

Wu, C. H.

Yamauchi, K.

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Yi, F.

Yuan, C.

Zhai, H.

Zhang, Y. B.

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Zhu, J. Q.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (2)

Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, and T. Ishikawa, “High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter,” Appl. Phys. Lett. 102(9), 094102 (2013).
[Crossref]

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[Crossref]

Biomed. Opt. Express (1)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Karaman, P.-C. Li, and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(3), 429–442 (1995).
[Crossref]

J. Micro/Nanolith. MEMS MOEMS. (1)

J. Li, Y. C. Lin, H. Y. Tu, J. Gui, C. Li, Y. Lou, and C. J. Cheng, “Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems,” J. Micro/Nanolith. MEMS MOEMS. 14(4), 041303 (2015).
[Crossref]

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002).
[Crossref] [PubMed]

J. Opt. (2)

Y. L. Lee, Y. C. Lin, H. Y. Tu, and C. J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15(2), 025403 (2013).
[Crossref]

X. J. Lai, C. J. Cheng, Y. C. Lin, and H. Y. Tu, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

Light Sci. Appl. (1)

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Nat. Photonics (3)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Opt. Express (7)

M. Paturzo, P. Memmolo, A. Tulino, A. Finizio, and P. Ferraro, “Investigation of angular multiplexing and de-multiplexing of digital holograms recorded in microscope configuration,” Opt. Express 17(11), 8709–8718 (2009).
[Crossref] [PubMed]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004).
[Crossref] [PubMed]

A. Hussain, J. L. Martínez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator,” Opt. Express 21(8), 9615–9623 (2013).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express 21(11), 12987–12995 (2013).
[Crossref] [PubMed]

A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11(19), 2446–2451 (2003).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Vinoth, X.-J. Lai, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution,” Sci. Rep. 8(1), 5943 (2018).
[Crossref] [PubMed]

Other (4)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).

J. W. Goodman, Statistical Optics (Wiley, 2000).

U. Schnars and W. P. O. Jüptner, Digital Holography, (Springer US, 2005).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The concept of the angular-multiplexing and coherence gating in the non-coplanar configuration
Fig. 2
Fig. 2 Holographic recording system by on-coplanar angular-multiplexing
Fig. 3
Fig. 3 Simulations of synthetic aperture recording and reconstruction by single shot angular multiplexing method, (a) and (b) Recorded hologram and its spectrum, (c) spectrum of normal aperture reconstruction, (d) and (e) reconstructed amplitude and phase by normal aperture. (f)Spectrum of synthetic aperture reconstruction, (g) and (h) reconstructed amplitude and phase by synthetic aperture. (i) and (j) is the cross section of x and y directions both in (e) and (h).
Fig. 4
Fig. 4 Experiments of one-shot SA-DHM. (a)Experimental setup, (b) and (c) Blazing grating for SLM in object and reference arms, respectively. SF: spatial filter, M: mirror, P: Polarizer, BS: Beam spliter, MO: Microscopic objective, L: Lens, S: sample.
Fig. 5
Fig. 5 Experiments results of normal aperture recording. (a) Hologram and its spectrum, (b) and (c) reconstructed amplitude and phase, (d) magnification image at the center of (b), (e) and (f) is the cross-section of (d) at line pair of 346nm and 312 nm.
Fig. 6
Fig. 6 Experiments results of one-shot synthetic aperture recording. (a) Hologram and its spectrum, (b) and (c) reconstructed amplitude and phase, (d) magnification image at the center of (b), (e) and (f) is the cross-section of (d) at line pair of 290 and 230 nm.
Fig. 7
Fig. 7 (a) phase sensitivity variation according to number of interference term in single hologram, (b) enhancement of phase sensitivity by numbers of time average.
Fig. 8
Fig. 8 Synthetic aperture reconstructed image after time average, (a) amplitude, (b) phase image, and (c) cross section of (a) at line pair of 200 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E j = A j exp[ i( k j r + δ j ) ] e j ,j=1,2,3,4n,
I( x,y )( j | E j | 2 )+2n i j n E i E j γ( h ) e ^ ij ,
γ( h )=exp[ ( πΔλh 2 2 λ 2 ) 2 ],
h= L j L i = f 1 ( 1 cos θ j 1 cos θ i )+ f 2 [ 1 cos( f 1 f 2 θ j ) 1 cos( f 1 f 2 θ i ) ] + f 3 [ 1 cos( f 1 f 2 θ j ) 1 cos( f 1 f 2 θ i ) ]( ) + f 4 [ 1 cos( f 3 f 1 f 4 f 2 θ j ) 1 cos( f 3 f 1 f 4 f 2 θ i ) ],
θ j > f 2 f 1 cos 1 [ πΔλ( f 1 + f 2 )cos θ i 2ln( 2 ) λ 2 cos( f 1 f 2 θ j )( f 1 + f 2 )πΔλ ].
2 f 3 f 4 sin 1 [ nD 2 f 3 ]< θ R + θ j < 2 f 3 f 4 sin 1 [ λ 4Δx ],

Metrics