Abstract

We report here the first watt-level efficient single-pass 1.54 μm fiber gas Raman source by methane-filled hollow-core fiber operating at atmospheric pressure. Pumped with a high-power MOPA (master oscillator power amplifier) structure Q-switched 1.06 μm pulsed solid-state laser, efficient 1.54 μm Stokes wave is generated in a single-pass configuration by vibrational stimulated Raman scattering of methane molecules. With an experimentally optimized fiber length of 3.2 m, we get a 1543.9 nm Stokes wave operating at atmospheric pressure with a record average power of ~0.83 W, which is about 12 times higher than the similar experiment previously reported, and the corresponding power conversion efficiency is about 45%. Operating at atmospheric pressure makes it more convenient in future applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm

Yubin Chen, Zefeng Wang, Zhixian Li, Wei Huang, Xiaoming Xi, and Qisheng Lu
Opt. Express 25(17) 20944-20949 (2017)

Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source

Zefeng Wang, Bo Gu, Yubin Chen, Zhixian Li, and Xiaoming Xi
Appl. Opt. 56(27) 7657-7661 (2017)

Efficient high power, narrow linewidth 1.9  μm fiber hydrogen Raman amplifier

Zhixian Li, Wei Huang, Yulong Cui, and Zefeng Wang
Appl. Opt. 57(14) 3902-3906 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).
  3. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  4. C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41(11), 2545–2548 (2016).
    [Crossref] [PubMed]
  5. I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express 20(9), 9471–9475 (2012).
    [Crossref] [PubMed]
  6. K. Guo, X. Wang, P. Zhou, and B. Shu, “4 kW peak power, eye-safe all-fiber master-oscillator power amplifier employing Yb-free Er-doped fiber,” Appl. Opt. 54(3), 504–508 (2015).
    [Crossref]
  7. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  8. A. V. V. Nampoothiri, A. M. Jones, and B. Baumgart, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  10. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref] [PubMed]
  11. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
    [Crossref] [PubMed]
  12. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
    [Crossref]
  13. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J],” Opt. Express 22(18), 21872–21878 (2014).
    [Crossref] [PubMed]
  14. A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
    [Crossref] [PubMed]
  15. M. R. Abu Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser[J],” Optica 3(3), 218–221 (2016).
    [Crossref]
  16. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
    [Crossref] [PubMed]
  17. Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm,” Opt. Express 25(17), 20944–20949 (2017).
    [Crossref] [PubMed]
  18. M. Xu, F. Yu, and J. Knight, “Mid-infrared 1 W hollow-core fiber gas laser source[J],” Opt. Lett. 42(20), 4055–4058 (2017).
    [Crossref] [PubMed]
  19. Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
    [Crossref] [PubMed]
  20. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
    [Crossref]
  21. Krylov, A. A., Gladyshev, A., Kosolapov, A. F., Senatorov, A. K., Kolyadin, A. N., & Dianov, E. M, “Raman Generation in 2.9 - 3.5 μm Spectral Range in Revolver Hollow-Core Silica Fiber Filled by H2/D2 Mixture,” IEEE Lasers and Electro-Optics 2017:STu1K.2.
  22. A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
    [Crossref]
  23. L. Cao, S. F. Gao, Z. G. Peng, X. C. Wang, Y. Y. Wang, and P. Wang, “High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
    [Crossref] [PubMed]
  24. F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  25. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
    [Crossref]
  26. William K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B. 3, 677–682 (1986).
  27. J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE Quantum Electronics 24(10), 2076–2080 (1988).
    [Crossref]

2018 (1)

2017 (5)

Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm,” Opt. Express 25(17), 20944–20949 (2017).
[Crossref] [PubMed]

Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
[Crossref] [PubMed]

M. Xu, F. Yu, and J. Knight, “Mid-infrared 1 W hollow-core fiber gas laser source[J],” Opt. Lett. 42(20), 4055–4058 (2017).
[Crossref] [PubMed]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

2016 (4)

2015 (2)

2014 (3)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J],” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

2013 (1)

S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).

2012 (3)

2010 (1)

2007 (1)

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

1988 (1)

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE Quantum Electronics 24(10), 2076–2080 (1988).
[Crossref]

1986 (1)

William K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B. 3, 677–682 (1986).

1970 (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Abdolvand, A.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Abu Hassan, M. R.

Alharbi, M.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Astapovich, M. S.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

Baumgart, B.

Bayri, A.

Belardi, W.

Benabid, F.

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bischel, William K.

William K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B. 3, 677–682 (1986).

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bufetov, I. A.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

Cadier, B.

Cao, L.

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Chen, Y.

Clarkson, W. A.

Couny, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Debord, B.

Donelan, B.

Dülgergil, E.

Dyer, M. J.

William K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B. 3, 677–682 (1986).

Eichhorn, M.

Engin, D.

S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).

Gao, S. F.

Gérôme, F.

Gladyshev, A. V.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

Gu, B.

Guo, K.

Gupta, S.

S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Huang, W.

Ilbey, E.

Ilday, F. Ö.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jones, A. M.

Khudyakov, M. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

Kieleck, C.

Kimpel, F.

S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).

Kneis, C.

Knight, J.

Knight, J. C.

M. R. Abu Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser[J],” Optica 3(3), 218–221 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J],” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Kolyadin, A. N.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

Kosolapov, A. F.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

Krylov, A. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

Li, Z.

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Likhachev, M. E.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

Lu, Q.

Manek-Hönninger, I.

Nampoothiri, A. V. V.

Nilsson, J.

Ottusch, J. J.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE Quantum Electronics 24(10), 2076–2080 (1988).
[Crossref]

Pavlov, I.

Peng, Z. G.

Pryamikov, A. D.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

Richardson, D. J.

Robin, T.

Rockwell, D. A.

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE Quantum Electronics 24(10), 2076–2080 (1988).
[Crossref]

Rudolph, W.

Russell, P. St. J.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Shu, B.

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Utano, R.

S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).

Wadsworth, W. J.

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Wang, P.

Wang, X.

Wang, X. C.

Wang, Y. Y.

Wang, Z.

Xi, X.

Xu, M.

Yu, F.

Yu, P. Y.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

Zhou, P.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

IEEE Quantum Electronics (3)

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” IEEE Quantum Electronics 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, P. Y. Yu, A. N. Kolyadin, and A. A. Krylov, “4.4-μm Raman laser based on hollow-core silica fibre,” IEEE Quantum Electronics 47(5), 491–494 (2017).
[Crossref]

J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE Quantum Electronics 24(10), 2076–2080 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

William K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B. 3, 677–682 (1986).

Laser Phys. Lett. (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Phys. Rev. Lett. (2)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Gupta, D. Engin, F. Kimpel, and R. Utano, “Fiber laser systems for space lasercom and remote sensing,” Proc. SPIE 8876, 7453–7458 (2013).

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Other (1)

Krylov, A. A., Gladyshev, A., Kosolapov, A. F., Senatorov, A. K., Kolyadin, A. N., & Dianov, E. M, “Raman Generation in 2.9 - 3.5 μm Spectral Range in Revolver Hollow-Core Silica Fiber Filled by H2/D2 Mixture,” IEEE Lasers and Electro-Optics 2017:STu1K.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup: mirrors, 1064 nm HR mirror; λ/2, half-wave plate; PBS, polarization beam splitter; Lens1,2,3, convex-plane lens; input and output window, AR-coated silica windows; HCFs, hollow core fibers; LPF, long-pass filter; (b) The transmission spectrum of the HCF measured with the cut-off method; (c) The scanning electron micrograph (SEM) of the HCF’s cross section.
Fig. 2
Fig. 2 Measured output optical spectrum at the gas pressures of 1 bar (a) and 5 bar (b) in a 3.2 m long HCF (OSA resolution: 0.1 nm); inset: a picture of the experimental platform showing the visible anti-stokes lines leaked from the HCF; (c) Measured fine spectrum near 1064.5 nm (c) and 1543.9 nm (d) with an OSA resolution of 0.02 nm.
Fig. 3
Fig. 3 Measured repetition frequency of the pump (a) and Stokes wave (b), respectively; Pulse shapes for the transmitted pump (c) and Stokes wave (d), respectively. Fiber length: 3.2 m, gas pressure: 1 bar.
Fig. 4
Fig. 4 The relationship between output Stokes power and efficiency with the coupled pump power under different gas pressure measured in 4.35 m (a), (b) and 3.2 m (c), (d) fiber length.
Fig. 5
Fig. 5 Evolution of the vibrational SRS threshold with the methane pressure and fiber length. The discrete points represent the measured data, and the solid lines are calculated from Eq. (1): G = 13.8 for 3.2 m, 11.8 for 4.35 m.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P th = A eff g α P (G+ α s L) 1exp( α P L)
g= 2 λ s 2 h ν s ΔN πΔv σ Ω

Metrics