Abstract

We report continuous-wave (CW) blue semipolar (202¯1) III-nitride laser diodes (LDs) that incorporate limited area epitaxy (LAE) n-AlGaN bottom cladding with thin p-GaN and ZnO top cladding layers. LAE mitigates LD design limitations that arise from stress relaxation, while ZnO layers reduce epitaxial growth time and temperature. Numerical modeling indicates that ZnO reduces the internal loss and increases the differential efficiency of TCO clad LDs. Room temperature CW lasing was achieved at 445 nm for a ridge waveguide LD with a threshold current density of 10.4 kA/cm2, a threshold voltage of 5.8 V, and a differential resistance of 1.1 Ω.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Semipolar III-nitride laser diodes with zinc oxide cladding

Anisa Myzaferi, Arthur H. Reading, Robert M. Farrell, Daniel A. Cohen, Shuji Nakamura, and Steven P. DenBaars
Opt. Express 25(15) 16922-16930 (2017)

Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 202¯1¯ GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers

Shlomo Mehari, Daniel A. Cohen, Daniel L. Becerra, Shuji Nakamura, and Steven P. DenBaars
Opt. Express 26(2) 1564-1572 (2018)

Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact

Benjamin P. Yonkee, Erin C. Young, Changmin Lee, John T. Leonard, Steven P. DenBaars, James S. Speck, and Shuji Nakamura
Opt. Express 24(7) 7816-7822 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
    [Crossref]
  2. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, 12A (1991).
    [Crossref]
  3. V. Bhatia, A. S. Bauco, H. M. Oubei, and D. A. S. Loeber, “Efficient green lasers for high-resolution scanning micro-projector displays,” Proc. SPIE 7582, 758205 (2010).
    [Crossref]
  4. L. Y. Kuritzky and J. S. Speck, “Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN,” MRS Commun. 5(03), 463–473 (2015).
    [Crossref]
  5. D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
    [Crossref]
  6. J. J. Wierer and J. Y. Tsao, “Phys. “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 980–985 (2015).
    [Crossref]
  7. C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
    [Crossref] [PubMed]
  8. C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
    [Crossref] [PubMed]
  9. J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III-nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
    [Crossref]
  10. D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
    [Crossref]
  11. J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
    [Crossref]
  12. Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
    [Crossref]
  13. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
    [Crossref]
  14. A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg–H complexes in pp-type GaN for cw blue laser diodes,” Appl. Phys. Lett. 98(21), 213505 (2011).
    [Crossref]
  15. C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
    [Crossref]
  16. M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
    [Crossref]
  17. J. Kim, H. Kim, and S. N. Lee, “Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes,” Curr. Appl. Phys. 11(4), S167–S170 (2011).
    [Crossref]
  18. B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
    [Crossref]
  19. D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
    [Crossref]
  20. M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
    [Crossref]
  21. A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
    [Crossref]
  22. A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
    [Crossref]
  23. M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
    [Crossref]
  24. E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).
  25. E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
    [Crossref]
  26. E. A. Fitzgerald, “Dislocations in strained-layer epitaxy: theory, experiment, and applications,” Mater. Sci. Rep. 7(3), 87–142 (1991).
    [Crossref]
  27. M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
    [Crossref]
  28. A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express 20(1), A13–A19 (2012).
    [Crossref] [PubMed]
  29. M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
    [Crossref]
  30. A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
    [Crossref]
  31. A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
    [Crossref] [PubMed]
  32. Fimmwave version 5.3.2, Photon Design (2011).
  33. R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
    [Crossref]
  34. E. Kioupakis, P. Rinke, and C. G. Van De Walle, “Determination of internal loss in nitride lasers from first principles,” Appl. Phys. Express 3(8), 82101 (2010).
    [Crossref]
  35. R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).
  36. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).
  37. M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
    [Crossref]
  38. T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
    [Crossref]
  39. A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
    [Crossref]
  40. J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis,” Cryst. Growth Des. 9(6), 2570–2575 (2009).
    [Crossref]
  41. J. J. Richardson and F. F. Lange, “Controlling low termpature aqueous synthesis of ZnO. 2. A novel continuous circulation reactor,” Cryst. Growth Des. 9(6), 2576–2581 (2009).
    [Crossref]
  42. D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
    [Crossref]

2017 (3)

2016 (3)

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

2015 (3)

L. Y. Kuritzky and J. S. Speck, “Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN,” MRS Commun. 5(03), 463–473 (2015).
[Crossref]

J. J. Wierer and J. Y. Tsao, “Phys. “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 980–985 (2015).
[Crossref]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

2013 (5)

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

2012 (2)

M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
[Crossref]

A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express 20(1), A13–A19 (2012).
[Crossref] [PubMed]

2011 (5)

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg–H complexes in pp-type GaN for cw blue laser diodes,” Appl. Phys. Lett. 98(21), 213505 (2011).
[Crossref]

J. Kim, H. Kim, and S. N. Lee, “Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes,” Curr. Appl. Phys. 11(4), S167–S170 (2011).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

2010 (5)

E. Kioupakis, P. Rinke, and C. G. Van De Walle, “Determination of internal loss in nitride lasers from first principles,” Appl. Phys. Express 3(8), 82101 (2010).
[Crossref]

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

V. Bhatia, A. S. Bauco, H. M. Oubei, and D. A. S. Loeber, “Efficient green lasers for high-resolution scanning micro-projector displays,” Proc. SPIE 7582, 758205 (2010).
[Crossref]

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

2009 (4)

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III-nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis,” Cryst. Growth Des. 9(6), 2570–2575 (2009).
[Crossref]

J. J. Richardson and F. F. Lange, “Controlling low termpature aqueous synthesis of ZnO. 2. A novel continuous circulation reactor,” Cryst. Growth Des. 9(6), 2576–2581 (2009).
[Crossref]

2007 (1)

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

2003 (1)

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

2002 (1)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

1996 (1)

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

1992 (1)

S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
[Crossref]

1991 (2)

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, 12A (1991).
[Crossref]

E. A. Fitzgerald, “Dislocations in strained-layer epitaxy: theory, experiment, and applications,” Mater. Sci. Rep. 7(3), 87–142 (1991).
[Crossref]

1989 (1)

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Adachi, M.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Allen, D.

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Ast, D. G.

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Bauco, A. S.

V. Bhatia, A. S. Bauco, H. M. Oubei, and D. A. S. Loeber, “Efficient green lasers for high-resolution scanning micro-projector displays,” Proc. SPIE 7582, 758205 (2010).
[Crossref]

Bhat, R.

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Bhatia, V.

V. Bhatia, A. S. Bauco, H. M. Oubei, and D. A. S. Loeber, “Efficient green lasers for high-resolution scanning micro-projector displays,” Proc. SPIE 7582, 758205 (2010).
[Crossref]

Bour, D.

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

Cantore, M.

Carberry, B.

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

Carlin, J. F.

A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg–H complexes in pp-type GaN for cw blue laser diodes,” Appl. Phys. Lett. 98(21), 213505 (2011).
[Crossref]

Castiglia, A.

A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg–H complexes in pp-type GaN for cw blue laser diodes,” Appl. Phys. Lett. 98(21), 213505 (2011).
[Crossref]

Chang, Y.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Cheng, B.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

Chichibu, S. F.

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III-nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

Chua, C.

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

Chua, C. L.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

Cohen, D. A.

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
[Crossref] [PubMed]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

Coleman, S.

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Cozzan, C.

Craig, R.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Dadgar, A.

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

DenBaars, S. P.

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
[Crossref] [PubMed]

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
[Crossref] [PubMed]

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express 20(1), A13–A19 (2012).
[Crossref] [PubMed]

M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
[Crossref]

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Eickhoff, M.

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

El-Desouki, M. M.

Enya, Y.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Farrell, R. M.

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

Feezell, D. F.

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

Fitzgerald, E. A.

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

E. A. Fitzgerald, “Dislocations in strained-layer epitaxy: theory, experiment, and applications,” Mater. Sci. Rep. 7(3), 87–142 (1991).
[Crossref]

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Fujito, K.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

Gallinat, C. S.

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

Goldhahn, R.

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

Grandjean, N.

A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg–H complexes in pp-type GaN for cw blue laser diodes,” Appl. Phys. Lett. 98(21), 213505 (2011).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Haeger, D. A.

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

Hagino, H.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Hardy, M. T.

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
[Crossref]

Holder, C. O.

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

Hsu, P. S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

Huang, C. Y.

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

Hughes, L. C.

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Hultåker, A.

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Imafuji, O.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Iveland, J.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Iwasa, N.

S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
[Crossref]

Janjua, B.

Jiang, H. X.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Johnson, N.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

Katayama, K.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Katayama, T.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Kawaguchi, M.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Kim, H.

J. Kim, H. Kim, and S. N. Lee, “Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes,” Curr. Appl. Phys. 11(4), S167–S170 (2011).
[Crossref]

Kim, J.

J. Kim, H. Kim, and S. N. Lee, “Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes,” Curr. Appl. Phys. 11(4), S167–S170 (2011).
[Crossref]

Kim, K. H.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Kioupakis, E.

E. Kioupakis, P. Rinke, and C. G. Van De Walle, “Determination of internal loss in nitride lasers from first principles,” Appl. Phys. Express 3(8), 82101 (2010).
[Crossref]

Kirchner, P. D.

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Knollenberg, C.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

Krames, M. R.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Krost, A.

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

Kuritzky, L. Y.

L. Y. Kuritzky and J. S. Speck, “Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN,” MRS Commun. 5(03), 463–473 (2015).
[Crossref]

Kyono, T.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Lange, F. F.

J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis,” Cryst. Growth Des. 9(6), 2570–2575 (2009).
[Crossref]

J. J. Richardson and F. F. Lange, “Controlling low termpature aqueous synthesis of ZnO. 2. A novel continuous circulation reactor,” Cryst. Growth Des. 9(6), 2576–2581 (2009).
[Crossref]

Lee, C.

Lee, S. N.

J. Kim, H. Kim, and S. N. Lee, “Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes,” Curr. Appl. Phys. 11(4), S167–S170 (2011).
[Crossref]

Li, B.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Li, J.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Lin, J. Y.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Loeber, D. A. S.

V. Bhatia, A. S. Bauco, H. M. Oubei, and D. A. S. Loeber, “Efficient green lasers for high-resolution scanning micro-projector displays,” Proc. SPIE 7582, 758205 (2010).
[Crossref]

Mondry, M. J.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Mughal, A. J.

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

Mukai, T.

S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, 12A (1991).
[Crossref]

Myzaferi, A.

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
[Crossref] [PubMed]

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

Nakamura, S.

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

A. Myzaferi, A. H. Reading, R. M. Farrell, D. A. Cohen, S. Nakamura, S. P. DenBaars, and S. P. Denbaars, “Semipolar III-nitride laser diodes with zinc oxide cladding,” Opt. Express 25(15), 16922–16930 (2017).
[Crossref] [PubMed]

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express 20(1), A13–A19 (2012).
[Crossref] [PubMed]

M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
[Crossref]

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, 12A (1991).
[Crossref]

Nakamura, T.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Nakarmi, M. L.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Ng, T. K.

Nozaki, S.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Oh, S. H.

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Paddock, B.

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Pan, C. C.

Pettit, G. D.

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Poblenz, C.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Preano, R. E.

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Proano, R.

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

Raring, J. W.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Reading, A. H.

Richardson, J. J.

A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express 20(1), A13–A19 (2012).
[Crossref] [PubMed]

J. J. Richardson and F. F. Lange, “Controlling low termpature aqueous synthesis of ZnO. 2. A novel continuous circulation reactor,” Cryst. Growth Des. 9(6), 2576–2581 (2009).
[Crossref]

J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis,” Cryst. Growth Des. 9(6), 2570–2575 (2009).
[Crossref]

Rinke, P.

E. Kioupakis, P. Rinke, and C. G. Van De Walle, “Determination of internal loss in nitride lasers from first principles,” Appl. Phys. Express 3(8), 82101 (2010).
[Crossref]

Romanov, A. E.

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

Rudy, P.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Schmidt, M. C.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Senoh, M.

S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, 12A (1991).
[Crossref]

Shan Hsu, P.

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

Shen, C.

Sizov, D.

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Song, K.

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Speck, J. S.

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

L. Y. Kuritzky and J. S. Speck, “Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN,” MRS Commun. 5(03), 463–473 (2015).
[Crossref]

Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
[Crossref]

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III-nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

Strittmatter, A.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

Takigawa, S.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Tanaka, T.

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Teepe, M.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

Tokuyama, S.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Tsao, J. Y.

J. J. Wierer and J. Y. Tsao, “Phys. “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 980–985 (2015).
[Crossref]

Tyagi, A.

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

Ueno, M.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Van De Walle, C. G.

E. Kioupakis, P. Rinke, and C. G. Van De Walle, “Determination of internal loss in nitride lasers from first principles,” Appl. Phys. Express 3(8), 82101 (2010).
[Crossref]

Walters, B.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

Wang, J.

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

Watson, G. P.

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Weidemann, O.

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

Wierer, J. J.

J. J. Wierer and J. Y. Tsao, “Phys. “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 980–985 (2015).
[Crossref]

Winzer, A. T.

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

Woodall, J. M.

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

Wu, F.

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

Wu, Y.

Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Yang, Z.

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

Yoshizumi, Y.

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

Young, E. C.

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

Zah, C. E.

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

Appl. Phys. Express (4)

J. W. Raring, M. C. Schmidt, C. Poblenz, Y. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 1121101 (2010).
[Crossref]

E. Kioupakis, P. Rinke, and C. G. Van De Walle, “Determination of internal loss in nitride lasers from first principles,” Appl. Phys. Express 3(8), 82101 (2010).
[Crossref]

T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura, “Optical Polarization Characteristics of InGaN quantum wells for green laser diodes on semipolar {2021} GaN substrates,” Appl. Phys. Express 3(1), 011003 (2010).
[Crossref]

D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L. C. Hughes, and C. E. Zah, “60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K,” Appl. Phys. Express 4(10), 102103 (2011).
[Crossref]

Appl. Phys. Lett. (8)

R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Determination of internal paramters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 17 (2011).

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

D. Bour, C. Chua, Z. Yang, M. Teepe, and N. Johnson, “Silver-clad nitride semiconductor laser diode,” Appl. Phys. Lett. 94(4), 041124 (2009).
[Crossref]

M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, and S. P. Denbaars, “Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes,” Appl. Phys. Lett. 103(8), 081103 (2013).
[Crossref]

A. Myzaferi, A. H. Reading, D. A. Cohen, R. M. Farrell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes,” Appl. Phys. Lett. 109(6), 61109 (2016).
[Crossref]

M. T. Hardy, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy,” Appl. Phys. Lett. 101(24), 241112 (2012).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg–H complexes in pp-type GaN for cw blue laser diodes,” Appl. Phys. Lett. 98(21), 213505 (2011).
[Crossref]

Cryst. Growth Des. (2)

J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis,” Cryst. Growth Des. 9(6), 2570–2575 (2009).
[Crossref]

J. J. Richardson and F. F. Lange, “Controlling low termpature aqueous synthesis of ZnO. 2. A novel continuous circulation reactor,” Cryst. Growth Des. 9(6), 2576–2581 (2009).
[Crossref]

Curr. Appl. Phys. (1)

J. Kim, H. Kim, and S. N. Lee, “Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes,” Curr. Appl. Phys. 11(4), S167–S170 (2011).
[Crossref]

Electron. Lett. (1)

A. J. Mughal, S. H. Oh, A. Myzaferi, S. Nakamura, J. S. Speck, and S. P. DenBaars, “High-power LEDs using Ga-doped ZnO current-spreading layers,” Electron. Lett. 52(4), 304–306 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Cheng, C. L. Chua, Z. Yang, M. Teepe, C. Knollenberg, A. Strittmatter, and N. Johnson, “Nitride laser diodes with nonepitaxial cladding layers,” IEEE Photonics Technol. Lett. 22(5), 329–331 (2010).
[Crossref]

M. T. Hardy, F. Wu, C. Y. Huang, Y. Zhao, D. F. Feezell, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Impact of p-GaN thermal damage and barrier composition on semipolar green laser diodes,” IEEE Photonics Technol. Lett. 26(1), 43–46 (2014).
[Crossref]

J. Appl. Phys. (3)

M. T. Hardy, F. Wu, P. Shan Hsu, D. A. Haeger, S. Nakamura, J. S. Speck, and S. P. Denbaars, “True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy,” J. Appl. Phys. 114(18), 183101 (2013).
[Crossref]

E. A. Fitzgerald, G. P. Watson, R. E. Preano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, “Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction of growth area,” J. Appl. Phys. 65(6), 2220–2237 (1989).
[Crossref]

A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. Denbaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys. 109(10), 103522 (2011).
[Crossref]

J. Disp. Technol. (1)

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

J. Electron. Mater. (1)

E. A. Fitzgerald, P. D. Kirchner, R. Proano, G. D. Pettit, J. M. Woodall, and D. G. Ast, “A method for reducing the number of interface defects in mismatched epilayers,” J. Electron. Mater. 17(4), S8–S9 (1996).

Jpn. J. Appl. Phys. (3)

S. Nakamura, N. Iwasa, T. Mukai, and M. Senoh, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31(1), 1258–1266 (1992).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, 12A (1991).
[Crossref]

Y. Zhao, R. M. Farrell, Y. Wu, and J. S. Speck, “Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices,” Jpn. J. Appl. Phys. 53(10), 100206 (2014).
[Crossref]

Mater. Sci. Rep. (1)

E. A. Fitzgerald, “Dislocations in strained-layer epitaxy: theory, experiment, and applications,” Mater. Sci. Rep. 7(3), 87–142 (1991).
[Crossref]

MRS Bull. (1)

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III-nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

MRS Commun. (1)

L. Y. Kuritzky and J. S. Speck, “Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN,” MRS Commun. 5(03), 463–473 (2015).
[Crossref]

Opt. Express (4)

Phys. Status Solidi (1)

A. J. Mughal, B. Carberry, S. H. Oh, A. Myzaferi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Optoelectronic properties of doped hydrothermal ZnO thin films: Optoelectronic properties of hydrothermal ZnO thin films,” Phys. Status Solidi 214(6), 1600941 (2017).
[Crossref]

Phys. Status Solidi Appl. Mater. Sci. (2)

R. Goldhahn, A. T. Winzer, A. Dadgar, A. Krost, O. Weidemann, and M. Eickhoff, “Modulation spectrocsopy of AlGaN/GaN heterostructures: The influence of electron-hole interaction,” Phys. Status Solidi Appl. Mater. Sci. 204(2), 447–458 (2007).
[Crossref]

D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. E. Zah, “Development of semipolar laser diode,” Phys. Status Solidi Appl. Mater. Sci. 210(3), 459–465 (2013).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J. J. Wierer and J. Y. Tsao, “Phys. “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 980–985 (2015).
[Crossref]

Proc. SPIE (2)

V. Bhatia, A. S. Bauco, H. M. Oubei, and D. A. S. Loeber, “Efficient green lasers for high-resolution scanning micro-projector displays,” Proc. SPIE 7582, 758205 (2010).
[Crossref]

M. Kawaguchi, O. Imafuji, S. Nozaki, H. Hagino, S. Takigawa, T. Katayama, and T. Tanaka, “Optical-loss supressed InGaN laser diodes using undoped thick waveguide structure,” Proc. SPIE 9748, 974818 (2016).
[Crossref]

Thin Solid Films (1)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Other (2)

Fimmwave version 5.3.2, Photon Design (2011).

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Dependence of (a) confinement factor, (b) internal loss, and (c) differential efficiency on p-GaN thickness for a structure with 250 nm of ITO or ZnO in the top cladding and different Al concentrations in the n-AlGaN bottom cladding.
Fig. 2
Fig. 2 (a) Dependence of confinement factor and internal mode loss on the AlGaN bottom cladding for devices with 5% Al composition in the bottom cladding, and 200 nm of p-GaN and 250 nm of ITO in the top cladding. (b) Transverse mode profile and refractive index as a function of distance in the growth direction for an LD with a 500 nm Al0.05Ga0.95N bottom cladding.
Fig. 3
Fig. 3 Cross-sectional schematic of the device structure reported in this letter, consisting of 750 nm of n-Al0.1Ga0.9N/GaN SPSL, 60 nm p-In0.08Ga0.92N waveguiding layer, three 3.7 nm In0.2Ga0.8N quantum wells and four 7.6 nm quantum barriers, a 10 nm p-Al0.21Ga0.79N electron blocking layer (EBL), a 40 nm p-In0.08Ga0.92N waveguiding layer, a 200 nm p-GaN layer, and 1.4 μm of ZnO. The thin light-yellow layer indicates the location of the p-Al0.21Ga0.79N EBL.
Fig. 4
Fig. 4 (a) Pulsed and CW L-I-V characteristics of a 4.0 μm wide by 900 μm long LD, (b) Current dependent spectra of a 1.6 μm wide by 900 μm long LD, showing emission at 445 nm, and (c) Pulsed temperature dependent L-I-V curves of a different 4.0 μm wide by 900 μm long LD. The inverse of the slope of a linear fit of the ln(Ith) vs. temperature data gives the To of the device, which was found to be 104 K.

Metrics