Abstract

We present the first experimental demonstration of orthogonal frequency division multiplexed (OFDM) modulation using the probabilistic shaping (PS) technique in visible light communication (VLC) systems, in order to increase the achievable information rate (AIR) according to the pre-estimated signal to noise ratio (SNR) of VLC channel. We numerically investigate the performance of PS technique and make a fair comparison with bit-loading technique under different scenarios. By using a phosphor-LED based VLC system with available bandwidth of ~45-MHz, OFDM with PS technique can experimentally realize an AIR of 204.1-Mb/s over 1-m free space transmission, leading to a 26.8% increment in comparison with OFDM using bit-loading technique at the expense of 16% overall forward error correction (FEC) overhead (OH).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED

Yuanquan Wang, Yiguang Wang, Nan Chi, Jianjun Yu, and Huiliang Shang
Opt. Express 21(1) 1203-1208 (2013)

Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications

Yang Hong, Jing Xu, and Lian-Kuan Chen
Opt. Express 25(11) 12908-12914 (2017)

Adaptive 84.44−190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance

C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu
Opt. Express 22(8) 9783-9788 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
    [Crossref]
  2. X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
    [Crossref]
  3. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  4. D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
    [Crossref]
  5. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  6. H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  7. J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.
  8. C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
    [Crossref]
  9. Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” in Optical Fiber Communication Conference (Los Angeles, California, 2011), Paper JW A83.
    [Crossref]
  10. H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
    [Crossref]
  11. C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
    [Crossref] [PubMed]
  12. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
    [Crossref]
  13. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
    [Crossref]
  14. J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  15. S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission on PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proceedings of European Conference on Optical Communication (Dusseldorf, Germany, 2016), paper Th.3.C.1.
  16. A. Ghazisaeidi, I. F. de Jauregui Ruiz, R. Rios-Müller, L. Schmalen, P. Tran, P. Brindel, and J. Renaudier, “Advanced C+ L-Band transoceanic transmission systems based on probabilistically shaped PDM-64QAM,” J. Lightwave Technol. 35(7), 1291–1299 (2017).
    [Crossref]
  17. D. Che and W. Shieh, “Entropy-Loading: The multi-carrier constellation-shaping for colored-SNR optical channels,” in Optical Fiber Communication Conference (Los Angeles, California, 2017), paper Th5B.4.
    [Crossref]
  18. D. Semrau, T. Xu, N. A. Shevchenko, M. Paskov, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping,” Opt. Lett. 42(1), 121–124 (2017).
    [Crossref] [PubMed]
  19. P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
    [Crossref]
  20. T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightwave Technol. 34(21), 5063–5073 (2016).
    [Crossref]
  21. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proceedings of European Conference on Optical Communication (Göteborg, Sweden, 2017), paper M. 2. D. 2.
  22. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
    [Crossref]
  23. F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
    [Crossref]
  24. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
    [Crossref]
  25. X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

2017 (3)

2016 (2)

2015 (6)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
[Crossref] [PubMed]

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

2014 (1)

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

2013 (1)

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

2012 (2)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

2011 (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

2010 (1)

2008 (2)

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

1993 (1)

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

Agrell, E.

Alvarado, A.

Bayvel, P.

Böcherer, G.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightwave Technol. 34(21), 5063–5073 (2016).
[Crossref]

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Brindel, P.

Chang, Y. C.

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” in Optical Fiber Communication Conference (Los Angeles, California, 2011), Paper JW A83.
[Crossref]

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Chen, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, H. Y.

Chen, S.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Chen, X.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, Z. Y.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Chi, N.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Chi, S.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Chow, C. W.

C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” in Optical Fiber Communication Conference (Los Angeles, California, 2011), Paper JW A83.
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

de Jauregui Ruiz, I. F.

Faulkner, G.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Fehenberger, T.

Feng, Z.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

Fu, S.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

Ghazisaeidi, A.

Grubor, J.

J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.

Haas, H.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Hanik, N.

Huang, B.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Huang, X.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Jung, D.

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Kavehrad, M.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Killey, R. I.

Koonen, T.

J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.

Kottke, C.

Kschischang, F. R.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

Langer, K. D.

Langer, K.-D.

J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.

Lavery, D.

Le Minh, H.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Lee, K.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Lee, S. C. J.

J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.

Li, B.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

Li, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Little, T. D.

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

Liu, D.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

Liu, Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” in Optical Fiber Communication Conference (Los Angeles, California, 2011), Paper JW A83.
[Crossref]

Liu, Y. L.

Maher, R.

Minh, H. L.

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Nerreter, S.

O’Brien, D.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

O’Brien, D. C.

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Oh, Y.

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Oh, Y. J.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Paskov, M.

Pasupathy, S.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

Renaudier, J.

Rios-Müller, R.

Schmalen, L.

Schulte, P.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Semrau, D.

Shevchenko, N. A.

Shi, J.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Steiner, F.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Tang, D.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Tang, M.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Tran, P.

Vucic, J.

Walewski, J. W.

J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.

Wang, Y.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Wang, Z.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Won, E. T.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Xiao, J.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Xu, T.

Yeh, C. H.

C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” in Optical Fiber Communication Conference (Los Angeles, California, 2011), Paper JW A83.
[Crossref]

Zeng, L.

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Zhou, H.

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

Electron. Lett. (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

IEEE Photonics J. (5)

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photonics J. 5(4), 7901507 (2013).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

X. Chen, Z. Feng, M. Tang, B. Li, H. Zhou, S. Fu, and D. Liu, “Three-dimensional adaptive modulation and coding for DDO-OFDM transmission system,” IEEE Photonics J. 9(2), 1–20 (2017).

IEEE Photonics Technol. Lett. (2)

H. L. Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

IEEE Trans. Commun. (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

IEEE Trans. Inf. Theory (2)

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory 39(3), 913–929 (1993).
[Crossref]

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

IEEE Wirel. Commun. (1)

N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X. Huang, “Visible light communications: demand factors, benefits and opportunities,” IEEE Wirel. Commun. 22(2), 5–7 (2015).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

D. O’Brien, H. Le Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Other (5)

J. Grubor, K.-D. Langer, S. C. J. Lee, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of European Conference on Optical Communication (Berlin, Germany, 2007), pp. 1–2.

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system,” in Optical Fiber Communication Conference (Los Angeles, California, 2011), Paper JW A83.
[Crossref]

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proceedings of European Conference on Optical Communication (Göteborg, Sweden, 2017), paper M. 2. D. 2.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission on PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proceedings of European Conference on Optical Communication (Dusseldorf, Germany, 2016), paper Th.3.C.1.

D. Che and W. Shieh, “Entropy-Loading: The multi-carrier constellation-shaping for colored-SNR optical channels,” in Optical Fiber Communication Conference (Los Angeles, California, 2017), paper Th5B.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) GMI of PS-16QAM, PS-64QAM and PS-256QAM versus the SNR of AWGN channel. (b) The SNR gaps to the Shannon capacity limit versus GMI of uniform M-QAM.
Fig. 2
Fig. 2 (a) Experimental setup of the VLC system, (b) pre-estimated SNR of the VLC channel over the frequency.
Fig. 3
Fig. 3 Simulation results of scenario 1: (a) Source entropy versus subcarrier index, (b) GMI as a function of subcarrier index, (c) NGMI as a function of subcarrier index, (d) corresponding constellation density of bit-loading and PS scheme.
Fig. 4
Fig. 4 Simulation results under scenario 2 and scenario 3: (a) Source entropy versus subcarrier index, (b) GMI as a function of subcarrier index, (c) NGMI as a function of subcarrier index, (d) the corresponding density constellation of bit-loading and PS scheme, when T_BER of bit-loading scheme is set to 5e-2.
Fig. 5
Fig. 5 Experimental verification, (a) Source entropy versus subcarrier index, (b) GMI as a function of subcarrier index, (c) NGMI as a function of subcarrier index, (d) corresponding constellation density of bit-loading and PS scheme.

Tables (1)

Tables Icon

Table 1 AIR performance comparison

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P X ( x i )= 1 j=1 M e υ | x j | 2 e υ | x i | 2
GMI 1 N k=1 N [ log 2 P X ( x k )] 1 N k=1 N i=1 m [ log 2 (1+ e (1) b k,i Λ k,i )]
Λ k,i =log x χ 1 i e | y k x | 2 2 σ 2 P X (x) x χ 0 i e | y k x | 2 2 σ 2 P X (x)
NGMI=GMI/m
NGMI=1-(H( P X )-GMI)/m

Metrics