Abstract

We present measurements of relative intensity noise versus various levels of optical feedback for 1.3 μm quantum dot lasers epitaxially grown on silicon for the first time. A systematic comparison is made with heterogeneously integrated 1.55 μm quantum well lasers on silicon. Our results indicate up to 20 dB reduced sensitivity of the quantum dot lasers on silicon compared to the quantum wells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon

Daisuke Inoue, Daehwan Jung, Justin Norman, Yating Wan, Nobuhiko Nishiyama, Shigehisa Arai, Arthur C. Gossard, and John E. Bowers
Opt. Express 26(6) 7022-7033 (2018)

Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge

Yue-Guang Zhou, Cheng Zhou, Chun-Fang Cao, Jiang-Bing Du, Qian Gong, and Cheng Wang
Opt. Express 25(23) 28817-28824 (2017)

Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon

Mengya Liao, Siming Chen, Zhixin Liu, Yi Wang, Lalitha Ponnampalam, Zichuan Zhou, Jiang Wu, Mingchu Tang, Samuel Shutts, Zizhuo Liu, Peter M. Smowton, Siyuan Yu, Alwyn Seeds, and Huiyun Liu
Photon. Res. 6(11) 1062-1066 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  2. M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: Driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
    [Crossref]
  3. R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
    [Crossref]
  4. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
    [Crossref]
  5. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
    [Crossref]
  6. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
    [Crossref]
  7. G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
    [Crossref]
  8. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback”, Opt. Lett.,  29, 1072–1074 (2004).
    [Crossref]
  9. S. Melnik, G. Huyet, and A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
    [Crossref] [PubMed]
  10. C. Otto, Dynamics of Quantum Dot Lasers: Effects of Optical Feedback and External Optical Injection (Springer Science and Business Media, 2014).
    [Crossref]
  11. J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron. 26, 833–836 (1990).
    [Crossref]
  12. A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors 46, 1225–1250 (2012).
    [Crossref]
  13. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (John Wiley and Sons, 2012).
    [Crossref]
  14. J. Wang and K. Petermann, “Noise analysis of semiconductor lasers within the coherence collapse regime,” IEEE J. Quantum Electron. 27, 3–9 (1991).
    [Crossref]
  15. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  16. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  17. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  18. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341, (2017).
    [Crossref] [PubMed]
  19. O. Ueda and S. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2014).
  20. M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
    [Crossref]
  21. D. Silvano and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).
    [Crossref]
  22. T. Komljenovic, M. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Opt. Lett. 41, 1773–1776 (2016).
    [Crossref] [PubMed]
  23. D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
    [Crossref]
  24. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489, (1995).
    [Crossref]

2017 (1)

2016 (4)

T. Komljenovic, M. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Opt. Lett. 41, 1773–1776 (2016).
[Crossref] [PubMed]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

2015 (3)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

2014 (2)

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: Driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

2013 (1)

D. Silvano and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).
[Crossref]

2012 (1)

A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors 46, 1225–1250 (2012).
[Crossref]

2007 (1)

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

2006 (1)

2004 (2)

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback”, Opt. Lett.,  29, 1072–1074 (2004).
[Crossref]

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

2003 (1)

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

1995 (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489, (1995).
[Crossref]

1991 (1)

J. Wang and K. Petermann, “Noise analysis of semiconductor lasers within the coherence collapse regime,” IEEE J. Quantum Electron. 27, 3–9 (1991).
[Crossref]

1990 (1)

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron. 26, 833–836 (1990).
[Crossref]

1986 (1)

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[Crossref]

Belt, M.

Bimberg, D.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Blumenthal, D. J.

Bowers, J.

Bowers, J. E.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341, (2017).
[Crossref] [PubMed]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: Driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Chraplyvy, A.

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (John Wiley and Sons, 2012).
[Crossref]

Cong, D. Y.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (John Wiley and Sons, 2012).
[Crossref]

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Davenport, M. L.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Fischer, M.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Gossard, A. C.

Gouezigou, O. L.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Gundavarapu, S.

Heck, M. J.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: Driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

Hegarty, S. P.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback”, Opt. Lett.,  29, 1072–1074 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Helms, J.

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron. 26, 833–836 (1990).
[Crossref]

Hinzer, K.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

Horng, R. H.

D. Silvano and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).
[Crossref]

Huang, D.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

Huang, X.

Hulme, J. C.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Huyet, G.

S. Melnik, G. Huyet, and A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[Crossref] [PubMed]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback”, Opt. Lett.,  29, 1072–1074 (2004).
[Crossref]

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jung, D.

Kettler, T.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Komljenovic, T.

T. Komljenovic, M. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Opt. Lett. 41, 1773–1776 (2016).
[Crossref] [PubMed]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Kovsh, A.

A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors 46, 1225–1250 (2012).
[Crossref]

Kovsh, A. R.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Krestnikov, I.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Laemmlin, M.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Lee, M. L.

Lemaitre, A.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Maksimov, M.

A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors 46, 1225–1250 (2012).
[Crossref]

Martinez, A.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (John Wiley and Sons, 2012).
[Crossref]

McInerney, J. G.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Melnik, S.

Merghem, K.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Mikhrin, S. S.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Mizumoto, T.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

Moreau, G.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Norman, J.

O’Brien, D.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback”, Opt. Lett.,  29, 1072–1074 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Otto, C.

C. Otto, Dynamics of Quantum Dot Lasers: Effects of Optical Feedback and External Optical Injection (Springer Science and Business Media, 2014).
[Crossref]

Pearton, S.

O. Ueda and S. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2014).

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489, (1995).
[Crossref]

J. Wang and K. Petermann, “Noise analysis of semiconductor lasers within the coherence collapse regime,” IEEE J. Quantum Electron. 27, 3–9 (1991).
[Crossref]

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron. 26, 833–836 (1990).
[Crossref]

Peters, J.

Pintus, P.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

Provost, J. G.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Ramdane, A.

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

Ribbat, C.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shoji, Y.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Silvano, D.

D. Silvano and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).
[Crossref]

Skendzic, S.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

SpringThorpe, A. J.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tkach, R.

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[Crossref]

Tran, M.

Ueda, O.

O. Ueda and S. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2014).

Uskov, A. V.

S. Melnik, G. Huyet, and A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006).
[Crossref] [PubMed]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback”, Opt. Lett.,  29, 1072–1074 (2004).
[Crossref]

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

Ustinov, V. M.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Volet, N.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

Wang, J.

J. Wang and K. Petermann, “Noise analysis of semiconductor lasers within the coherence collapse regime,” IEEE J. Quantum Electron. 27, 3–9 (1991).
[Crossref]

White, J. K.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhang, C.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhukov, A.

A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors 46, 1225–1250 (2012).
[Crossref]

Zhukov, A. E.

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Appl. Phys. Lett. (1)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Electron. Lett. (2)

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

D. Y. Cong, A. Martinez, K. Merghem, G. Moreau, A. Lemaitre, J. G. Provost, O. L. Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, “Optimisation of a-factor for quantum dot InAs/GaAs Fabry-Perot lasers emitting at 1.3 μm,” Electron. Lett. 43, 222–224 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Wang and K. Petermann, “Noise analysis of semiconductor lasers within the coherence collapse regime,” IEEE J. Quantum Electron. 27, 3–9 (1991).
[Crossref]

J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron. 26, 833–836 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: Driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489, (1995).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. Heck, and J. E. Bowers, “Heterogeneous silicon/III–V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 1–11 (2016).
[Crossref]

D. Silvano and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).
[Crossref]

J. Lightwave Technol. (1)

R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Photon. Res. (1)

Phys. Stat. Sol. (1)

G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” Phys. Stat. Sol. 201, 345–352 (2004).
[Crossref]

Semiconductors (1)

A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors 46, 1225–1250 (2012).
[Crossref]

Other (3)

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (John Wiley and Sons, 2012).
[Crossref]

C. Otto, Dynamics of Quantum Dot Lasers: Effects of Optical Feedback and External Optical Injection (Springer Science and Business Media, 2014).
[Crossref]

O. Ueda and S. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A numerical evaluation of Eq. 1 for two different values of the K factor characteristic of either quantum dot lasers (K=1 ns) [12] or quantum well lasers (K=0.265 ns) [13], with everything else kept the same (τL=4 ps, fr =3 GHz, γ0=0.65 GHz, R=0.3.
Fig. 2
Fig. 2 A schematic of the measurement setup used in this study.
Fig. 3
Fig. 3 Typical light-current characteristics of the quantum dot lasers on GaP/Si and heterogeneously integrated quantum well lasers in this study.
Fig. 4
Fig. 4 Lasing spectra at 20°C from a heterogeneously integrated quantum well laser on silicon (left - biased at 48 mA) and a quantum dot laser on silicon (right - biased at 57 mA) used in this study. Multiple longitudinal Fabry-Perot modes are visible in each case.
Fig. 5
Fig. 5 Laser RIN at 100 MHz with thermal and shot noise subtracted out versus various levels of optical feedback for two different heterogeneously integrated quantum well lasers (left) and two different quantum dot lasers on silicon (right). The legend indicates the bias current applied to the laser as well as the optical power received at the spectrometer. While the quantum well lasers sometimes exhibit increases in RIN up to 30 dB over the range of feedback values, the variation in RIN for the quantum dot lasers is limited to within 10 dB the measured bias currents.
Fig. 6
Fig. 6 Total system RIN from 100 MHz to 10 GHz, for quantum well and quantum dot lasers biased at 1.5×Ith. The feedback induces strongly enhanced RIN peaks in the noise spectra of the quantum well laser, with the peak around 2 GHz presumably related to the relaxation oscillation frequency. Similar features are not visible in the case of the quantum dot lasers.
Fig. 7
Fig. 7 Measured low frequency system RIN at weak and strong feedback levels at 2×Ith. Enhanced RIN peaks are visible under strong feedback for both types of lasers at frequencies separated by the external cavity roundtrip frequency. However the increase under strong feedback is much less for the quantum dot laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f crit = τ L 2 ( K f r 2 + γ 0 ) 2 16 | C e | 2 ( 1 + α 2 α 4 )

Metrics