Abstract

A black-box polarization insensitive fiber optical parametric amplifier (PI-FOPA) is characterized for the first time using a commercial 127 Gb/s polarization-division multiplexed PDM-QPSK transponder within a multiplex of twenty-two equivalent DWDM signals across a 2.3 THz bandwidth portion of the C-band. The PI-FOPA employs a recently demonstrated diversity loop arrangement comprising two lengths of highly nonlinear fiber (HNLF) with the parametric pump being removed after the first HNLF in both directions about the loop. This arrangement is named the Half-Pass Loop FOPA or HPL-FOPA. In total, a record equivalent 2.3 Tb/s of data is amplified within the HPL-FOPA for three different pump power regimes producing net-gains of 10 dB, 15 dB and 20 dB (averaged over all signals). For the latter two regimes, the gain bandwidth is observed to extend considerably beyond the C-band, illustrating the potential for this design to amplify signals over bandwidths commensurate with the EDFA and beyond. Under the 15 dB gain condition, the average OSNR penalty to achieve 10−3 bit error rate for all twenty three signals was found to be 0.5 ± 0.3 dB. Worst case penalty was 0.8 ± 0.3 dB, verifying the use of the architecture for polarization insensitive operation. The growth of four-wave mixing signal-signal crosstalk is additionally characterized and found to be gain independent for a fixed output power per signal. A simple effective length model is developed which predicts this behavior and suggests a new configuration for significantly reduced crosstalk.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping

M.F.C. Stephens, I.D. Phillips, P. Rosa, P. Harper, and N.J. Doran
Opt. Express 23(2) 902-911 (2015)

Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers

J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. Chavez Boggio, P.A. Andrekson, M. Karlsson, and S. Radic
Opt. Express 18(17) 18138-18150 (2010)

Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

Zohreh Lali-Dastjerdi, Michael Galili, Hans Christian Hansen Mulvad, Hao Hu, Leif Katsuo Oxenløwe, Karsten Rottwitt, and Christophe Peucheret
Opt. Express 21(22) 25944-25953 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. Gordienko, M. F. C. Stephens, A. E. El-Taher, and N. J. Doran, “Ultra-flat wideband single-pump Raman-enhanced parametric amplification,” Opt. Express 25(5), 4810–4818 (2017).
    [Crossref] [PubMed]
  2. R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [Crossref]
  3. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
    [Crossref] [PubMed]
  4. T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
    [Crossref]
  5. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarisation-independent Two-Pump fibre-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
    [Crossref]
  6. J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
    [Crossref]
  7. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric amplification, wavelength conversion, and phase conjugation of a 2.048-Tbit/s WDM PDM 16-QAM signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
    [Crossref]
  8. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
    [Crossref]
  9. M. F. C. Stephens, M. Tan, I. D. Phillips, S. Sygletos, P. Harper, and N. J. Doran, “1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation,” Opt. Express 22(10), 11840–11848 (2014).
    [Crossref] [PubMed]
  10. I. Sackey, F. Da Ros, T. Richter, R. Elschner, M. Jazayerifar, C. Meuer, C. Peucheret, K. Petermann, and C. Schubert, “Design and performance evaluation of an OPC device using a dual-pump polarization-independent FOPA,” in European Conference on Optical Communication (ECOC 2014), paper Tu.1.4.4.
    [Crossref]
  11. M. Jazayerifar, I. Sackey, R. Elschner, S. Warm, C. Meuer, C. Schubert, and K. Petermann, “Impact of SBS on polarization-insensitive single-pump optical parametric amplifiers based on a diversity loop scheme,” in European Conference on Optical Communication (ECOC 2014), paper Tu4.6.4.
    [Crossref]
  12. S. Takasaka and R. Sugizaki, “Polarization insensitive fiber optical parametric amplifier using a SBS suppressed diversity loop,” in Optical Fiber Communication Conference (Optical Society of America, 2016) paper M3D.4.
    [Crossref]
  13. M. F. C. Stephens, V. Gordienko, and N. J. Doran, “20dB net-gain fiber optical parametric amplification of 18x120Gb/s polarization-multiplexed signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th4A.1.
    [Crossref]
  14. M. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in European Conference on Optical Communication (ECOC 2014), paper P.5.1.
    [Crossref]
  15. J. M. Fini and L. E. Gruner-Nielsen, “Dispersion fluctuation invariant fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2014) paper Tu2K.2.
    [Crossref]
  16. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  17. M. F. C. Stephens and A. Redyuk, S, Sygletos, I. D. Phillips, P. Harper, K. J. Blow, and N. J. Doran, “The impact of pump phase-modulation and filtering on WDM signals in a fibre optical parametric amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W2A.43.
  18. J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
    [Crossref]
  19. A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
    [Crossref]
  20. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
    [Crossref]
  21. Z. Lali-Dastjerdi, T. Lund-Hansen, N. Kang, K. Rottwitt, M. Galili, and C. Peucheret, “High-frequency RIN transfer in fibre optic parametric amplifiers,” in Conference on Lasers and Electro-Optics Europe (CLEO-Europe 2011), paper CI2.5.
    [Crossref]
  22. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
    [Crossref]
  23. R. Elschner, T. Richter, and C. Schubert, “Characterization of FWM-induced crosstalk for WDM operation of a fiber-optical parametric amplifier,” in European Conference on Optical Communication (ECOC 2011), paper Mo.1.A.2.
    [Crossref]
  24. M. F. C. Stephens, I. D. Phillips, P. Rosa, P. Harper, and N. J. Doran, “Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping,” Opt. Express 23(2), 902–911 (2015).
    [Crossref] [PubMed]
  25. A. Redyuk, M. F. C. Stephens, and N. J. Doran, “Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping,” Opt. Express 23(21), 27240–27249 (2015).
    [Crossref] [PubMed]
  26. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
    [Crossref] [PubMed]

2017 (1)

2015 (3)

2014 (1)

2009 (2)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

2007 (1)

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

2005 (2)

J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
[Crossref]

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

2004 (2)

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
[Crossref]

2002 (2)

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarisation-independent Two-Pump fibre-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

1996 (2)

1982 (1)

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Agrawal, G. P.

Alic, N.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Andrekson, P.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Bayart, D.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Bjorkholm, J.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Boggio, J. M. C.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
[Crossref]

Callegari, F. A.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Chandrasekhar, S.

Chavez Boggio, J. M.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Chiang, T. K.

Dinu, M.

Doran, N. J.

Durécu-Legrand, A.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

El-Taher, A. E.

Fragnito, H. L.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
[Crossref]

Gnauck, A. H.

Gordienko, V.

Guimarães, A.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Harper, P.

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hu, H.

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Jopson, R. M.

Kagi, N.

Kazovsky, L. G.

Lantz, E.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Lin, Q.

Maillotte, H.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Marconi, J. D.

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
[Crossref]

Marhic, M. E.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarisation-independent Two-Pump fibre-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
[Crossref] [PubMed]

M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
[Crossref] [PubMed]

Moro, S.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Mussot, A.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Myslivets, E.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Phillips, I. D.

Radic, S.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Randel, S.

Redyuk, A.

Rosa, P.

Simonneau, C.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Stephens, M. F. C.

Stolen, R.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Sygletos, S.

Sylvestre, T.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

Tan, M.

Torounidis, T.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Uesaka, K.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarisation-independent Two-Pump fibre-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

Vedadi, A.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Windmiller, J. R.

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarisation-independent Two-Pump fibre-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

Xie, C.

IEEE J. Quantum Electron. (1)

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (5)

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarisation-independent Two-Pump fibre-optical parametric amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

J. M. C. Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009).
[Crossref]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber optical parametric amplifier,” IEEE Photonics Technol. Lett. 16(5), 1289–1291 (2004).
[Crossref]

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. Commun. 249(4–6), 451–472 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (9)

R. Elschner, T. Richter, and C. Schubert, “Characterization of FWM-induced crosstalk for WDM operation of a fiber-optical parametric amplifier,” in European Conference on Optical Communication (ECOC 2011), paper Mo.1.A.2.
[Crossref]

Z. Lali-Dastjerdi, T. Lund-Hansen, N. Kang, K. Rottwitt, M. Galili, and C. Peucheret, “High-frequency RIN transfer in fibre optic parametric amplifiers,” in Conference on Lasers and Electro-Optics Europe (CLEO-Europe 2011), paper CI2.5.
[Crossref]

M. F. C. Stephens and A. Redyuk, S, Sygletos, I. D. Phillips, P. Harper, K. J. Blow, and N. J. Doran, “The impact of pump phase-modulation and filtering on WDM signals in a fibre optical parametric amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W2A.43.

I. Sackey, F. Da Ros, T. Richter, R. Elschner, M. Jazayerifar, C. Meuer, C. Peucheret, K. Petermann, and C. Schubert, “Design and performance evaluation of an OPC device using a dual-pump polarization-independent FOPA,” in European Conference on Optical Communication (ECOC 2014), paper Tu.1.4.4.
[Crossref]

M. Jazayerifar, I. Sackey, R. Elschner, S. Warm, C. Meuer, C. Schubert, and K. Petermann, “Impact of SBS on polarization-insensitive single-pump optical parametric amplifiers based on a diversity loop scheme,” in European Conference on Optical Communication (ECOC 2014), paper Tu4.6.4.
[Crossref]

S. Takasaka and R. Sugizaki, “Polarization insensitive fiber optical parametric amplifier using a SBS suppressed diversity loop,” in Optical Fiber Communication Conference (Optical Society of America, 2016) paper M3D.4.
[Crossref]

M. F. C. Stephens, V. Gordienko, and N. J. Doran, “20dB net-gain fiber optical parametric amplification of 18x120Gb/s polarization-multiplexed signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th4A.1.
[Crossref]

M. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in European Conference on Optical Communication (ECOC 2014), paper P.5.1.
[Crossref]

J. M. Fini and L. E. Gruner-Nielsen, “Dispersion fluctuation invariant fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2014) paper Tu2K.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of HPL-FOPA experimental setup. ASE = amplified spontaneous emission; VOA = variable optical attenuator; EDFA = erbium doped fiber amplifier; OSA = optical spectrum analyzer; PM = power meter; WDM = wavelength division multiplexing filter; FBG = fiber Bragg grating; BPF = bandpass filter; HNLF = highly nonlinear fiber; PBS = polarization beam splitter; P/C = polarization controller.
Fig. 2
Fig. 2 (a) HPL-FOPA calibrated output spectra for four pump power regimes: off, ‘Low’, ‘Medium’ and ‘High’ as defined in Table 1. λp = 1564.4 nm; ftsp = 1549.3 nm (193.5 THz) and −20 dBm per signal input power. (b) Signal gain spectra (both on-off and net-gain shown) for ‘Low’, ‘Medium’ and ‘High’ pump regimes as defined in Table 1. The spectra highlighted in black were chosen for subsequent experiments as the flattest for each regime.
Fig. 3
Fig. 3 (a) Graph showing change in transponder BER (1549.3 nm/193.5 THz) as the pathX/Y gain difference (gainX–gainY) of the HPL-FOPA is changed. (b) Graph of transponder BER (1549.3 nm/193.5 THz) against time as signal polarization scrambled.
Fig. 4
Fig. 4 BER against received OSNR under ‘Low’, ‘Medium’ and ‘High’ HPL-FOPA pump power conditions for (a) ftsp = 193.5 THz (1549.3 nm), (b) ftsp = 194.5 THz (1541.4 nm), (c) ftsp = 195.5 THz (1533.5 nm). A comparison with the back-to-back transponder performance at each ftsp is included for each condition.
Fig. 5
Fig. 5 Graph showing the received OSNR required to achieve a BER of 10−3 against wavelength in both back to back and ‘Medium’ pump power (~15 dB net-gain) configurations. Measurement error is estimated to be ± 0.1 dB and ± 0.2 dB respectively.
Fig. 6
Fig. 6 (a) Tap-monitored output power spectra from the HPL-FOPA with pump turned off and output power per signal varied from + 1 dBm to + 7 dBm (OSA RBW = 0.02 nm). (b) Signal peak to crosstalk ratio vs signal output power for HPL-FOPA with pump turned off at 1541.4 nm (194.5 THz). Colors correspond to Fig. 6(a).
Fig. 7
Fig. 7 (a) Tap-monitored output power spectra from the HPL-FOPA under fixed ‘Medium’ pump power condition (15 dB net-gain) as output power per signal varied from −3 dBm to + 6 dBm (OSA RBW = 0.02 nm). (b) Signal peak to crosstalk ratio at 1541.4 nm (194.5 THz) against signal output power for HPL-FOPA under the three pump power conditions ‘Low’, ‘Medium’ and ‘High’ (10 dB, 15 dB and 20 dB net-gains).
Fig. 8
Fig. 8 (a) Power profiles against propagation distance for two configurations of HPL-FOPA, both with 20 dB net-gain and output power of 20 dBm. Blue configuration has the first 200 m HNLF pumped. Red configuration has second HNLF pumped (b) Effective length against distance through the HPL-FOPA for the same two configurations.
Fig. 9
Fig. 9 Graph showing Effective Length (Leff) against signal net-gain for the two HPL-FOPA configurations. The black crosses indicate the gains that were experimentally investigated in Section 3.2.

Tables (1)

Tables Icon

Table 1 Pump power regimes used for HPL-FOPA gain characterization

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L eff = 0 L P( z )dz P( L ) .
P s ( z )= P s ( z 0 )× | cosh( rz ) | 2 and P i ( z )= P s ( z 0 )× | sinh( rz ) | 2 .

Metrics