P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[Crossref]
[PubMed]
J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
[Crossref]
M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]
J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]
J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]
B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]
J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref]
[PubMed]
E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
D. Dolfi, “New trends in optoelectronics for radar, EW and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (2011).
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref]
[PubMed]
S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]
E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]
R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref]
[PubMed]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]
X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]
V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).
E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]
R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref]
[PubMed]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref]
[PubMed]
J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]
X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]
R. A. Minasian, “Photonic signal processing of microwave signal,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]
J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
[Crossref]
J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]
B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]
G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]
S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]
F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[Crossref]
[PubMed]
W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[Crossref]
[PubMed]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref]
[PubMed]
E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]
J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]
F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]
B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]
J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]
R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref]
[PubMed]
J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]
B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]
J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref]
[PubMed]
S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[Crossref]
[PubMed]
W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[Crossref]
[PubMed]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref]
[PubMed]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]
C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]
J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]
F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref]
[PubMed]
Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]
J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[Crossref]
[PubMed]
W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[Crossref]
[PubMed]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]
Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]
C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]
Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
[Crossref]
[PubMed]
Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]
F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref]
[PubMed]
Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]
J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]
J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]
L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]
X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref]
[PubMed]
F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]
J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]
F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref]
[PubMed]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]
X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref]
[PubMed]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett. 38(5), 802–804 (2013).
[Crossref]
[PubMed]
E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref]
[PubMed]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]
X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]
X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]
J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]
Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]
J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]
J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]
Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]
M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]
L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]
F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]
C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]
S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]
X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]
J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]
E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]
R. A. Minasian, “Photonic signal processing of microwave signal,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]
J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]
J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
[Crossref]
X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]
E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]
J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]
L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]
G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]
C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]
V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]
J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]
Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref]
[PubMed]
J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref]
[PubMed]
S. C. Chan, Q. Liu, Z. Wang, and K. S. Chiang, “Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning,” Opt. Express 19(13), 12045–12052 (2011).
[Crossref]
[PubMed]
Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
[Crossref]
[PubMed]
M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
[Crossref]
[PubMed]
R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref]
[PubMed]
P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref]
[PubMed]
N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref]
[PubMed]
F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref]
[PubMed]
Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett. 38(5), 802–804 (2013).
[Crossref]
[PubMed]
E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref]
[PubMed]
J. Liu, N. Guo, Z. Li, C. Yu, and C. Lu, “Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops,” Opt. Lett. 38(21), 4304–4307 (2013).
[Crossref]
[PubMed]
W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[Crossref]
[PubMed]
F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]
D. Sridhar, “Efficient OFDM PAPR reduction method using linear phase variation,” in International Journal of Electronics Communication & Computer Engineering (2011).
D. Dolfi, “New trends in optoelectronics for radar, EW and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (2011).
V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).
N. You and R. A. Minasian, “Synthesis of WDM grating-based optical microwave filter with arbitrary impulse response,” in International Topical Meeting on Microwave Photonics (MWP, 1999), pp. 223–226.
[Crossref]
J. Wang, Y. Xuan, A. J. Metcalf, P. Wang, X. Xue, D. E. Leaird, A. M. Weiner, and M. Qi, A multi-channel thermally reconfigurable SiN spectral shaper,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3G.4.
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. Tom, and A. M. Weiner, Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” in CLEO: 2011 - Laser Science to Photonic Applications (OSA, 2011).
T. Kippenberg, “Microresonator-based optical frequency combs,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3M.1.
[Crossref]