Abstract

The feasibility of a single sideband (SSB) PAM4 intensity-modulation and direct-detection (IM/DD) transmission based on a CMOS ADC and DAC is experimentally demonstrated in this work. To cost effectively build a >50 Gb/s system as well as to extend the transmission distance, a low cost EML and a passive optical filter are utilized to generate the SSB signal. However, the EML-induced chirp and dispersion-induced power fading limit the requirements of the SSB filter. To separate the effect of signal-signal beating interference, filters with different roll-off factors are employed to demonstrate the performance tolerance at different transmission distance. Moreover, a high resolution spectrum analysis is proposed to depict the system limitation. Experimental results show that a minimum roll-off factor of 7 dB/10GHz is required to achieve a 51.84Gb/s 40-km transmission with only linear feed-forward equalization.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of SOA-induced pattern effect on the filter requirements in vestigial sideband direct detected PAM4 transmission

Yan Fu, Haiyun Xin, Kuo Zhang, Jie Bai, Meihua Bi, Xin Miao, Longsheng Li, Zidong Guo, Hao He, and Weisheng Hu
Opt. Express 26(23) 30305-30312 (2018)

Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection

Mingyue Zhu, Jing Zhang, Xingwen Yi, Hao Ying, Xiang Li, Ming Luo, Yingxiong Song, Xiatao Huang, and Kun Qiu
Opt. Express 26(6) 6629-6638 (2018)

Optical single-sideband OFDM transmission based on a two-segment EAM

Hsuan-Lin Cheng, Wei-Hung Chen, Chia-Chien Wei, and Yi-Jen Chiu
Opt. Express 23(2) 982-990 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM systems,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.1.
  2. L. Zhang, E. Zhou, and Q. Zhang, x. xu, G. N. Liu, and T. ZUO, “C-band Single Wavelength 100-Gb/s IM-DD Transmission over 80-km SMF without CD compensation using SSB-DMT,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4A.2.
  3. H.-Y. Chen, C.-C. Wei, I.-C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
    [Crossref] [PubMed]
  4. C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
    [Crossref]
  5. N. Kikuchi, R. Hirai, and T. Fukui, “Practical implementation of 100-Gbit/s/lambda optical short-reach transceiver with Nyquist PAM4 signaling using electroabsorptive modulated laser (EML),” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.2.
    [Crossref]
  6. T. Chan and W. Way, “112 Gb/s PAM4 Transmission Over 40km SSMF Using 1.3 µm Gain-Clamped Semiconductor Optical Amplifier,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.4.
    [Crossref]
  7. Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Proceedings of Optical Fiber Communication Conference, (2010), OMR2.
    [Crossref]
  8. M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightwave Technol. 17(10), 1742–1749 (1999).
    [Crossref]
  9. J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.
  10. S. X. Chew, X. Yi, S. Song, L. Li, P. Bian, L. Nguyen, and R. Minasian, “Silicon-on-insulator dual-ring notch filter for optical sideband suppression and spectral characterization,” J. Lightwave Technol. 34(20), 4705–4714 (2016).
    [Crossref]
  11. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011).
    [Crossref] [PubMed]
  12. A. Villafranca, J. Lasobras, and I. Garces, “Precise characterization of the frequency chirp in directly modulated DFB lasers,” in Proceedings of Spanish Conference on Electron Devices (2007), pp. 173–176.
    [Crossref]
  13. C. Heras, J. Subías, J. Pelayo, and F. Villuendas, “High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter,” Opt. Express 15(7), 3708–3714 (2007).
    [Crossref] [PubMed]
  14. N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature Effect towards DFB Laser Wavelength on Microwave Generation Based on Two Optical Wave Mixing,” Int. J. Optoelectron. Eng. 5(2), 21–27 (2015).
  15. W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in Proceedings of European Conference on Optical Communication (2010), pp. 1–3.
    [Crossref]
  16. S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
    [Crossref]
  17. Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
    [Crossref]
  18. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  19. N. Kaneda, J. Lee, and Y.-K. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu2D.5.
  20. O/E Land Inc, “25G/50G/100G/200G DWDM Division Multiplexer”, http://www.o-eland.com/FiberGratingProducts/FiberGrating_wdm_multiplexer.htm .
  21. Finisar Co, “40 channels 100G DWDM MUX/DEMUX Module”, https://www.finisar.com/roadms-wavelength-management/fwsf-d-40-md-r-lc .
  22. Flyin Optronics Co, 80ch 50G Athermal AWG, http://www.flyinoptronics.com/80ch-50g-athermal-awg.html .

2016 (3)

2015 (1)

N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature Effect towards DFB Laser Wavelength on Microwave Generation Based on Two Optical Wave Mixing,” Int. J. Optoelectron. Eng. 5(2), 21–27 (2015).

2014 (1)

2011 (1)

2007 (1)

1999 (1)

Bayvel, P.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Bian, P.

Chandrasekhar, S.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
[Crossref]

Chen, H.-Y.

Chen, J.

Chen, Y. K.

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

Chen, Y.-C.

H.-Y. Chen, C.-C. Wei, I.-C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
[Crossref] [PubMed]

C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
[Crossref]

Chen, Y.-K.

N. Kaneda, J. Lee, and Y.-K. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu2D.5.

Chew, S. X.

Chu, H.-H.

H.-Y. Chen, C.-C. Wei, I.-C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
[Crossref] [PubMed]

C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
[Crossref]

Conradi, J.

Dochhan, A.

A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM systems,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.1.

Dodds, D. E.

Eiselt, M.

A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM systems,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.1.

Elbers, J. P.

A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM systems,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.1.

Erkilinc, M. S.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Fukui, T.

N. Kikuchi, R. Hirai, and T. Fukui, “Practical implementation of 100-Gbit/s/lambda optical short-reach transceiver with Nyquist PAM4 signaling using electroabsorptive modulated laser (EML),” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.2.
[Crossref]

Galdino, L.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Garces, I.

A. Villafranca, J. Lasobras, and I. Garces, “Precise characterization of the frequency chirp in directly modulated DFB lasers,” in Proceedings of Spanish Conference on Electron Devices (2007), pp. 173–176.
[Crossref]

Griesser, H.

A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM systems,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.1.

Heras, C.

Hirai, R.

N. Kikuchi, R. Hirai, and T. Fukui, “Practical implementation of 100-Gbit/s/lambda optical short-reach transceiver with Nyquist PAM4 signaling using electroabsorptive modulated laser (EML),” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.2.
[Crossref]

Hsu, D.-Z.

Hui, R.

Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Proceedings of Optical Fiber Communication Conference, (2010), OMR2.
[Crossref]

Kaneda, N.

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

N. Kaneda, J. Lee, and Y.-K. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu2D.5.

Kikuchi, N.

N. Kikuchi, R. Hirai, and T. Fukui, “Practical implementation of 100-Gbit/s/lambda optical short-reach transceiver with Nyquist PAM4 signaling using electroabsorptive modulated laser (EML),” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.2.
[Crossref]

Killey, R. I.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Lasobras, J.

A. Villafranca, J. Lasobras, and I. Garces, “Precise characterization of the frequency chirp in directly modulated DFB lasers,” in Proceedings of Spanish Conference on Electron Devices (2007), pp. 173–176.
[Crossref]

Lee, J.

N. Kaneda, J. Lee, and Y.-K. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu2D.5.

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

Li, L.

Li, W.-Y.

Li, Z.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Liu, G. N.

Lu, I.-C.

H.-Y. Chen, C.-C. Wei, I.-C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
[Crossref] [PubMed]

C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
[Crossref]

Maher, R.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Mao, Y.

Minasian, R.

Morita, I.

W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in Proceedings of European Conference on Optical Communication (2010), pp. 1–3.
[Crossref]

Nguyen, L.

O’Sullivan, M.

Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Proceedings of Optical Fiber Communication Conference, (2010), OMR2.
[Crossref]

Pelayo, J.

Peng, W. R.

W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in Proceedings of European Conference on Optical Communication (2010), pp. 1–3.
[Crossref]

Pilori, D.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
[Crossref]

Priambodo, P. S.

N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature Effect towards DFB Laser Wavelength on Microwave Generation Based on Two Optical Wave Mixing,” Int. J. Optoelectron. Eng. 5(2), 21–27 (2015).

Randel, S.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
[Crossref]

Raybon, G.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
[Crossref]

Shi, K.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Sieben, M.

Song, C.-Y.

C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
[Crossref]

Song, S.

Subías, J.

Tanaka, H.

W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in Proceedings of European Conference on Optical Communication (2010), pp. 1–3.
[Crossref]

Thomsen, B. C.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Villafranca, A.

A. Villafranca, J. Lasobras, and I. Garces, “Precise characterization of the frequency chirp in directly modulated DFB lasers,” in Proceedings of Spanish Conference on Electron Devices (2007), pp. 173–176.
[Crossref]

Villuendas, F.

Wei, C.-C.

Widiyatmoko, B.

N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature Effect towards DFB Laser Wavelength on Microwave Generation Based on Two Optical Wave Mixing,” Int. J. Optoelectron. Eng. 5(2), 21–27 (2015).

Winzer, P.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
[Crossref]

Xu, X.

Xu, Z.

Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Proceedings of Optical Fiber Communication Conference, (2010), OMR2.
[Crossref]

Yi, X.

Yulianto, N.

N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature Effect towards DFB Laser Wavelength on Microwave Generation Based on Two Optical Wave Mixing,” Int. J. Optoelectron. Eng. 5(2), 21–27 (2015).

Zhang, L.

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

L. Zhang, E. Zhou, and Q. Zhang, x. xu, G. N. Liu, and T. ZUO, “C-band Single Wavelength 100-Gb/s IM-DD Transmission over 80-km SMF without CD compensation using SSB-DMT,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4A.2.

Zhang, Q.

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

L. Zhang, E. Zhou, and Q. Zhang, x. xu, G. N. Liu, and T. ZUO, “C-band Single Wavelength 100-Gb/s IM-DD Transmission over 80-km SMF without CD compensation using SSB-DMT,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4A.2.

Zhou, E.

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

L. Zhang, E. Zhou, and Q. Zhang, x. xu, G. N. Liu, and T. ZUO, “C-band Single Wavelength 100-Gb/s IM-DD Transmission over 80-km SMF without CD compensation using SSB-DMT,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4A.2.

Zuo, T.

IEEE Photonics Technol. Lett. (1)

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Int. J. Optoelectron. Eng. (1)

N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature Effect towards DFB Laser Wavelength on Microwave Generation Based on Two Optical Wave Mixing,” Int. J. Optoelectron. Eng. 5(2), 21–27 (2015).

J. Lightwave Technol. (3)

Opt. Express (3)

Other (14)

A. Villafranca, J. Lasobras, and I. Garces, “Precise characterization of the frequency chirp in directly modulated DFB lasers,” in Proceedings of Spanish Conference on Electron Devices (2007), pp. 173–176.
[Crossref]

W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in Proceedings of European Conference on Optical Communication (2010), pp. 1–3.
[Crossref]

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proceedings of European Conference and Exhibition on Optical Communication (2015), paper Mo.4.5.2.
[Crossref]

N. Kaneda, J. Lee, and Y.-K. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated,” in Proceedings of Optical Fiber Communication Conference (2017), paper Tu2D.5.

O/E Land Inc, “25G/50G/100G/200G DWDM Division Multiplexer”, http://www.o-eland.com/FiberGratingProducts/FiberGrating_wdm_multiplexer.htm .

Finisar Co, “40 channels 100G DWDM MUX/DEMUX Module”, https://www.finisar.com/roadms-wavelength-management/fwsf-d-40-md-r-lc .

Flyin Optronics Co, 80ch 50G Athermal AWG, http://www.flyinoptronics.com/80ch-50g-athermal-awg.html .

C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
[Crossref]

N. Kikuchi, R. Hirai, and T. Fukui, “Practical implementation of 100-Gbit/s/lambda optical short-reach transceiver with Nyquist PAM4 signaling using electroabsorptive modulated laser (EML),” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.2.
[Crossref]

T. Chan and W. Way, “112 Gb/s PAM4 Transmission Over 40km SSMF Using 1.3 µm Gain-Clamped Semiconductor Optical Amplifier,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.4.
[Crossref]

Z. Xu, M. O’Sullivan, and R. Hui, “Spectral-efficient OOFDM system using compatible SSB modulation with a simple dual-electrode MZM,” in Proceedings of Optical Fiber Communication Conference, (2010), OMR2.
[Crossref]

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM systems,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th3A.1.

L. Zhang, E. Zhou, and Q. Zhang, x. xu, G. N. Liu, and T. ZUO, “C-band Single Wavelength 100-Gb/s IM-DD Transmission over 80-km SMF without CD compensation using SSB-DMT,” in Proceedings of Optical Fiber Communication Conference (2015), paper Th4A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup of an EAM-based SSB PAM4 IMDD transmission.
Fig. 2
Fig. 2 The received signal spectrum and the simulated responses with chirp factors of 0.76 and 0 at (a) 40 km and (b) 80 km.
Fig. 3
Fig. 3 Transfer curve of the EML and the corresponding first faded dips’ frequency at 80 km as well as the calculated chirp factors as 80 km.
Fig. 4
Fig. 4 (a) the optical spectrum of signal with DSB, LSB and USB filter, and (b) the corresponding received spectrum at 80 km.
Fig. 5
Fig. 5 (a) the BER of LSB under different OSNR at B-t-B, 40 km and 80km, and (b) the corresponding normalized optical spectrum at the BER of about 3.8x10−3.
Fig. 6
Fig. 6 (a) the BER results under different carrier position at B-t-B, 40 km and 80 km, respectively, and (b) the corresponding SSR and CSPR.
Fig. 7
Fig. 7 (a) the optical spectrum of filters with different roll-off, and, and (b) the corresponding optical spectrum of the optical signal after applying the filters.
Fig. 8
Fig. 8 (a) the SSR as a function of filter’s roll-off and relative frequency of carrier, and the corresponding transmitted loss of the received signal at (b) 40 km and (c) 80 km.
Fig. 9
Fig. 9 (a) the BER results under different roll-off of filter at B-t-B, 40 km and 80 km, respectively, and (b) the corresponding SSR and CSPR.
Fig. 10
Fig. 10 (a) The BER curves under different filter roll-off at B-t-B, 40 km and 80 km, respectively, and (b) the corresponding eye diagrams at the received power of 0 dBm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P r (1+ α 2 ) cos 2 (2 π 2 β 2 L f 2 tan 1 α)

Metrics